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Numerical Modeling and Simulation for Analysis of Convective Heat and Mass Transfer 
in Cryogenic Liquid Storage and HVAC&R Applications 

Son Hong Ho 

ABSTRACT 

This work presents the use of numerical modeling and simulation for the analysis 

of transport phenomena in engineering systems including zero boil-off (ZBO) cryogenic 

storage tanks for liquid hydrogen, refrigerated warehouses, and human-occupied air-

conditioned spaces. Seven problems of medium large spaces in these fields are presented. 

Numerical models were developed and used for the simulation of fluid flow and heat and 

mass transfer for these problems. Governing equations representing the conservation of 

mass, momentum, and energy were solved numerically resulting in the solution of 

velocity, pressure, temperature, and species concentration(s). Numerical solutions were 

presented as 2-D and 3-D plots that provide more insightful understanding of the relevant 

transport phenomena. Parametric studies on geometric dimensions and/or boundary 

conditions were carried out. Four designs of ZBO cryogenic liquid hydrogen storage tank 

were studied for their thermal performance under heat leak from the surroundings. Steady 

state analyses show that higher flow rate of forced fluid flow yields lower maximum fluid 

temperature. 3-D simulation provides the visualization of the complex structures of the 3-

D distributions of the fluid velocity and temperature. Transient analysis results in the 

patterns of fluid velocity and temperature for various stages of a proposed cooling cycle 

and the prediction of its effective operating term. A typical refrigerated warehouse with a 
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set of ceiling type cooling units were modeled and simulated with both 2-D and 3-D 

models. It was found that if the cooling units are closer to the stacks of stored packages, 

lower and more uniform temperature distribution can be achieved. The enhancement of 

thermal comfort in an air-conditioned residential room by using a ceiling fan was studied 

and quantified to show that thermal comfort at higher temperature can be improved with 

the use of ceiling fan. A 3-D model was used for an analysis of thermal comfort and 

contaminant removal in a hospital operating room. It was found that if the wall supply 

grilles are closer to the center, the system has better performance in both contaminant 

removal and thermal comfort. A practical guideline for using CFD modeling in indoor 

spaces with an effective meshing approach is also proposed. 
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Chapter 1 Introduction 

1.1 Cryogenic Liquid Hydrogen Storage 

Hydrogen has been well recognized as a powerful and clean energy fuel for a few 

decades, especially for space applications such as the Centaur upper stage rocket 

(Dawson and Bowles, 2004). Although hydrogen has many advantages over most 

conventional fuels, efficient storing of hydrogen is difficult because of its very low 

density (Colozza, 2002). Besides several new devising storage methods (carbon 

nanotubes, carbon fullerenes, and hydrides), conventional methods in which hydrogen is 

stored as a compressed gas or as a cryogenic liquid are still two primary storage 

techniques used in the industry. Liquid storage of hydrogen has a very significant 

advantage over gaseous or chemical storage because of its much lower storage volume 

and ease of regeneration of the fuel with its demand. Conventional cryogenic storage 

tanks suffer loss of hydrogen due to boil-off of the cryogen induced by heat leak to the 

tank from the surrounding environment. In order to keep the inner pressure within the 

structural limits of the tank, the stored fluid needs to be periodically vented. 

The Zero Boil-Off (ZBO) concept has evolved as an innovative means of storage 

tank pressure control by a synergistic application of passive insulation, active heat 

removal, and forced mixing within the tank. The goal is that the fuel can be stored for a 

very long time with almost no loss. In recent years, a number of efforts have been done 

towards the guidelines of building cryogenic storage systems, especially with the ZBO 
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concept. Salerno and Kittel (1999) presented the proposed Mars reference mission and 

the concomitant cryogenic fluid management technology with a combination of both 

active and passive technologies to satisfy a wide range of requirements. Kamiya et al. 

(2000, 2001) consecutively presented the development of a large experimental apparatus 

to measure the thermal conductance of various insulations and used that for the testing of 

insulation structures. Hasting et al. (2002) presented an overview of the efforts in the 

development of the ZBO storage systems at NASA, showing that a ZBO system has mass 

advantage over passive storage. Kittel (2002) suggested an alternative approach for the 

long-term storage of cryogenic propellants using a re-liquefier that uses the propellant 

vapor as the working fluid. Khemis et al. (2003) presented an experimental investigation 

of heat transfer in a cryostat without lateral insulation. Panzarella and Kassemi (2003) 

presented a comprehensive analysis of the transport processes that control the self-

pressurization of a cryogenic tank in normal gravity. Hofmann (2004) presented a theory 

of boil-off gas-cooled shields for cryogenic storage vessels using an analytical method to 

determine the effectiveness of intermediate refrigeration. Haberbusch et al. (2004) 

developed a design tool for thermally zero boil-off densified cryogen storage system for 

space. The model predicted that a ZBO densified liquid hydrogen storage system 

minimizes the overall storage system mass and volume for nearly the same input power 

for cooling. Mukka and Rahman (2004a, 2004b) used computational fluid dynamics 

(CFD) simulation to study the fluid flow and heat transfer in a cryogenic liquid hydrogen 

storage tank of displacement type where cool fluid enters the tank at one end, mixes with 

hot fluid inside, and exits at the other end. Mahmoud et al. (2004) presented the modeling 

of the amount of liquid para-hydrogen vaporized during a discharging/charging process 
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in a cryogenic storage system. Venkat and Sherif (2004) studied a liquid storage system 

under normal and reduced-gravity conditions. Li et al. (2004) analyzed the effects of 

liquid volume fraction, temperature, and pressure on the pressure rise rates in cryogenic 

vessels. Reiss (2004, 2006a, 2006b) presented numerical simulations, using thermal 

networks, of shield temperature and radiative and conductive heat losses of a super-

insulated cryogenic storage tank operating at 77 K in stationary and unsteady-state 

conditions. Plachta et al. (2006) presented the propellant storage thermal analysis and 

design for two space missions. They modeled and designed passive storage concepts for 

cryogenic propellants for these missions. The propellant tank’s view was isolated to deep 

space to achieve zero boil-off for both liquid hydrogen and liquid oxygen storage without 

cryocooler. 

The ZBO concept for cryogenic liquid storage has been developing recently for 

less than ten years. A number of study has been done are experimental. On the side of 

theory development, modeling, and simulation, most of the analysis work has been done 

using energy balance (thermodynamics approach) or simplified theories for design. These 

studies confirm the feasibility of the ZBO concept in cryogenic liquid storage in 

macroscopic level. Transient analyses are also reported for some unsteady processes. 

Although CFD method has many advantages over the other methods, especially that it 

allows the study of the distributions of temperature and fluid flow in details and thus 

gives insightful understanding of the transport phenomena, the use of CFD approach in 

the field is in its first developing phase. A few works using CFD simulation have been 

done for some tank designs under different working environments. The results reported 

are mostly the distributions of fluid flow and temperature in details. Most CFD analysis 
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work employs axisymmetric models. Explicit predictions on the effects of forced fluid 

velocity and geometric dimensions as design parameters on the distributions of fluid flow 

and temperature, and thus overall thermal performance of the system, of a ZBO storage 

tank design have not been focused adequately and studied systematically. Complex 3-D 

patterns of fluid flow and temperature in a ZBO storage tank are necessary to understand 

the transport phenomena and need to be done. For an investigation of the effectiveness of 

a cooling cycle in ZBO storage tank, maximum temperature is the key parameter since it 

triggers the boil-off of the fluid in the tank. A transient analysis for studying a cooling 

cycle controlled by maximum fluid temperature is necessary. 

Chapters 3 through 6 propose four designs for ZBO cryogenic liquid hydrogen 

storage system. Chapter 3 presents a steady-state analysis for liquid hydrogen inside a 

storage tank equipped with an inlet tube and a nozzle head that contains many nozzles on 

its front face. Liquid hydrogen cooled by an external cryocooler flows along the nozzle 

head assembly, penetrates into the bulk liquid through the nozzles in order to prevent the 

boiling off due to heat leak from the surroundings through the tank wall insulation, exits 

the tank through an annular outlet opening coaxial with the inlet, and then goes back to 

the external cooling system. This design was proposed by Ho and Rahman (2006). The 

design concept was similar to that of a test prototype developed at NASA Glenn Research 

Center presented by Hedayat et al. (2002). The prototype had a spray bar located along 

the centerline and the fluid in the tank was drawn through a nearby opening instead of 

nozzle head and concentric outlet opening in the present design. A parametric analysis 

was performed for different geometric settings to find the best dimensions for an 

optimized design. 
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Chapter 4 presents a steady-state analysis for liquid hydrogen inside a storage 

tank with a heat pipe and an array of pump-nozzle units distributed around the heat pipe 

that creates a forced flow directed onto the evaporator section of the heat pipe in order to 

prevent the liquid from boiling off due to heat leaking through the tank wall insulation 

from the surroundings. This design was proposed by Rahman and Ho (2005). The heat 

pipe–mixer (pump) design concept was first introduced by Plachta (2004) as another 

ZBO design concept implemented by a prototype developed at NASA Glenn Research 

Center. The prototype had a heat pipe with many fins on the evaporator section and a 

mixer pump that collected and directed the fluid toward the heat pipe fins. The present 

design has smooth evaporator section of the heat pipe and lateral pump-nozzle units. 

Parametric analysis was performed for both geometric settings and fluid velocity from the 

nozzle. 

Chapter 5 presents a steady-state analysis with a 3-D model for liquid hydrogen 

inside a storage tank equipped with heat pipe and a single lateral pump-nozzle unit that 

collects fluid at its inlet and discharges through its nozzle onto the evaporator section of 

the heat pipe in order to prevent the fluid to boil off due to the heat leaking through the 

tank wall from the surroundings. This design was proposed by Ho and Rahman (2007b). 

It is similar to the previous design but only has on pump-nozzle unit that make the 

geometry of the tank highly 3-D and complex, and so are the fluid flow and temperature 

distribution. The 3-D simulation provides the complex 3-D solution of interest such as 

velocity and temperature inside the tank. 

Chapter 6 presents the transient analysis for liquid hydrogen inside a storage tank 

with a heat pipe located along the symmetric axis of the tank, and an axial pump-nozzle 
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unit that collects fluid inside the tank and discharges onto the evaporator section of the 

heat pipe, which is kept at a constant low temperature, where the heat is removed 

passively to the condenser section of the heat pipe located outside the tank and eventually 

to the ambient via an active cryocooler. This design was proposed by Ho and Rahman 

(2007a). It is closely similar to the prototype presented by Plachta (2004) except that the 

prototype had no nozzle and the pump mixer was not axisymmetric. A transient analysis 

using CFD approach was performed. The distribution of fluid velocity and temperature in 

different cooling stages and the effective lifetime of a cooling scheme were studied. 

1.2 Refrigerated Warehousing 

The utilization of refrigeration for the cold storage of perishable foods has been 

employed for more than a century. The needs for refrigerated storage grow with hot 

weather. The frozen food industry has expanded many times in freezer storage in a few 

decades after World War II. Recently, the gross capacity of refrigerated warehouses in 

the United States has increased constantly every year. Industrial refrigeration 

applications, specifically refrigerated warehouses, are also significant energy consumers. 

Proper design of space for refrigeration requires knowledge of thermal behavior of the air 

distribution and thermal conditions within the space. Cold storage facilities require the 

most attention to thermal behavior since it greatly influences the cost. Many refrigerated 

spaces operate at low temperatures, which increase the severity of the service condition 

imposed on the system. Frozen food quality is sensitive to both storage temperature and 

fluctuations in temperature. Inadequate refrigeration system operation may result in 

negative impacts on product quality: accelerated deterioration reactions at elevated 

temperatures, the growth in ice crystal size occurring during the temperature fluctuations. 
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Even for a thermally well insulated refrigerated warehouse with no loading or unloading 

activities, there is still heat transfer through floor, ceiling, and walls, as well as heat load 

from lighting. Cooling units (CU) such as those equipped with cooling coil and blowing 

fan have to be employed to keep the food products under proper temperature. Ceiling 

type cooling units are used frequently in larger cold storage rooms, both freezer and 

cooler, because they are out of the way and use no valuable floor space and are also high 

enough off the floor that they are not subject to damage from materials handling 

equipment (Woolrich and Hallowell, 1970). In a ceiling type CU, direct mounted fans of 

propeller type either blow through the coil bank or placed on the outlet side and pull the 

air through the coil bank. 

Guidelines of settings in a refrigerated warehouse can be found in several books 

such as International Institute of Refrigeration (IIR, 1966), Woolrich and Hallowell 

(1970), Tressler et al. (1968), and Hardenburg et al. (1986). The manual by Woolrich and 

Hallowell (1970) provides a comprehensible background and common practice on 

refrigerated warehouse construction, equipment, and management. More specific 

guidelines for preservation of foods can be found in Tressler et al. (1968). Theoretically, 

frozen food should be stacked in solid piles in such a way as to reduce to the minimum 

air circulation around the products for keeping less desiccation and oxidation except for 

the case that the products are canned or packed in sealed containers. Frozen foods are 

warehoused in a number of different types of containers including wooden boxes, fiber 

board containers, tin cans, etc. The guidelines by Tressler et al. (1968) suggest that for 

any types of storage containers used, the packages must be so placed in storage as to 

allow air circulation around them to improve cooling effectiveness. For maintaining 
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vertical circulation, the packages should not be stacked too close to the walls. A clearance 

of 6 in. (0.15 m) or more should be provided on all four sides of the storage room. Aisles 

between arrays of stacks are needed, mainly for the handling operations but also for 

horizontal circulation. The width of the aisles should be considered to allow the use of 

mechanical loading equipments while saving storage space. Packages should not be piled 

higher than 12 to 18 in. (0.30 to 0.46 m) below the ceiling or 6 in. (0.15 m) below the 

bottom of the ceiling coils and should not be stacked within 5 feet (1.52 m) of any non-

refrigerated space, such as openings to stairs or elevator wells. Packages of frozen food 

should never be stocked directly on the floor but may be piled on fork-type pallets or on 

floor racks at preferably 4 in. (0.10 m) above the floor. General use of pallets improves 

the organization of refrigerated transport, and pallets can serve as floor dunnage at the 

same time. The practice guide by the IIR (1966) provides more specific guidelines on the 

use of pallets in refrigerated warehouses. A clearance of 2 to 6 in. (0.05 to 0.15 m) width 

on each side of the pallet is necessary to provide a free space of 4 to 12 in. (0.10 to 0.30 

m) between two pallets to reduce the difficulty of placing and removal of pallets as well 

as to induce vertical circulation. 

Although there are general guidelines of operation of refrigerated warehouses, 

they do not show how relevant parameters affect the cooling effectiveness and 

temperature uniformity for refrigerated warehouse. Therefore, more studies in details are 

needed to evaluate the effectiveness of the combinations of parameters on efficiently 

utilizing them in various situations, for both design and operation of refrigerated 

warehouse. Baird and Gaffney (1976) developed a numerical model for predicting 

transient heat transfer in pre-cooling operation. The numerical model and procedures 
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allowed calculations of cooling rates in beds of fruits and vegetables as a function of 

product size, air velocity, air temperature, and depth of the bulk load. Later, Baird et al. 

(1988) proposed the design criteria for efficient and cost effective forced air cooling 

systems for fruits and vegetables which cover the effects of many parameters including 

initial product temperature, desired final product temperature, flow rate, temperature and 

relative humidity of the cooling air, ambient temperature, etc., among other factors 

related to characteristics of product and equipment, and cost. An engineering-economic 

model was used to study the influence of each of these variables as well as some of their 

interactions as they affect cooling time and/or cooling cost. Nicoulin et al. (1997) 

presented the use of general-purpose transient simulation computer models for simulating 

the energy performance of large commercial refrigeration systems typically found in food 

processing facilities to predict facility performance and estimate savings with inclusion of 

modeling issues specific to refrigerated warehouse systems, including warehouse loading 

door infiltration calculations, evaporator model, single-stage and multi-stage compressor 

models, evaporative condenser models, and defrost energy requirements. 

The increasing developments of computers and the field of computational fluid 

dynamics (CFD) in the recent years have opened the possibilities of a low-cost yet 

effective method for modeling and simulation of airflow and heat transfer in refrigerated 

warehouses with fewer physical experiments required. Smale et al. (2006) reviewed 

various numerical modeling techniques, focusing on CFD and briefly on others including 

Lattice Boltzmann method (LBM) and network models, to the prediction of airflow in 

refrigerated food applications including cool stores, transport equipment and retail 

display cabinets. Hoang et al. (2000) presented an analysis of airflow in a cold store using 
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CFD approach employing the Reynolds-averaged Navier–Stokes equations with k-ε 

turbulence model. A comparison with experimental measurements resulted in an average 

difference of 26% between calculated and measured air velocities. Nahor et al. (2005) 

developed a transient three-dimensional CFD model with the use of standard k-ε 

turbulence model to calculate the velocity, temperature and moisture distribution in an 

existing empty and loaded cool store. The results showed that an average accuracy of 

20%-22% on the velocity magnitudes was achieved and that the model was capable of 

predicting both the air and product temperature with reasonable accuracy. Chourasia and 

Goswami (2007) simulated the effects of stack dimensions and stacking arrangements on 

heat transfer characteristics in a stack of bagged potatoes during cooling by using a CFD 

model and found a satisfactory agreement between the experimental transient temperature 

data from a commercial potato cold store and simulated results with an average 

temperature difference of 1.4 ± 0.98°C. Foster et al. (2002, 2003, 2006, 2007) reported 

several studies concerned with reducing air infiltration in cold stores by means of CFD 

modeling and simulation for various cases. A CFD model for air movement through a 

doorway was developed and verified against conventional and laser Doppler anemometry 

(LDA) measurements (Foster et al., 2002). Measurements of infiltration through different 

size entrances of a cold store at two different cold store temperatures were taken and 

compared against established analytical models and CFD models (Foster et al., 2003). 

More recently, they presented 2-D and 3-D analysis of the effectiveness and optimization 

of air curtain devices with CFD models and comparison to the measured data (Foster et 

al., 2006, 2007). For each study, the CFD model was generally found to be in agreement 

with experimental data to some degrees. The effects of the relative position of a cooling 
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unit to the stacks of product packages to the distribution of temperature within a large 

refrigerated space is important to designing a new warehouse or managing an existing 

one to allow the use of the refrigerated spaces effectively. This aspect has never been 

addressed. It is the aim of the study in Chapter 7 to find an optimum location for the 

cooling unit relative to stacks of product packages in a refrigerated warehouse. 

Chapter 7 presents an analysis of steady-state thermal behavior in a refrigerated 

warehouse equipped with ceiling-type cooling units. The computational domain includes 

a refrigerated space with arrays of 2 back-to-back rows of 4 piles by 3 stacks of palletized 

product packages. On the ceiling in front of them is installed a set of cooling units where 

the fan pulls air through cooling coil and blows into the space. Both 3-D and 2-D models 

were employed for studying the transport phenomena. 2-D model was then employed for 

a parametric analysis to study the effects on temperature of various blowing air velocities 

and different locations of the cooling unit(s). The maximum and average temperature and 

the spatial standard deviation of temperature distribution were employed for quantitative 

assessment on the effects of the cooling unit locations to the temperature distribution in 

the refrigerated warehouse. 

1.3 Indoor Environment Control 

Thermal comfort is dependent on many factors, in which temperature, humidity, 

and air speed are among the most important ones. For a cooling scenario, although low 

temperature is the first choice for comfort control, moderate air speed as a breeze can 

enhance thermal comfort at higher temperature by “wind chill” effect. In residences, 

temperature control is achieved by using air conditioners, while air speed can be 

increased by using ceiling fans. The proper use of a ceiling fan in an air-conditioned 
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room can result in better thermal comfort and energy savings. Rohles et al. (1982, 1983) 

have studied the effectiveness of ceiling fans in enhancing comfort experimentally by 

examining 256 subjects under various temperature and air velocity in an environment 

chamber equipped with a ceiling fan. The results showed that an air plume from a ceiling 

fan whose velocity is between 0.5-1.0 m/s compensates for a 2.8-3.3°C temperature 

change; this represents an energy savings of 15-18%. Morton-Gibson et al. (1985) have 

investigated the effects of ceiling fans or individual fans on thermal comfort in an office 

building and found that operating fans for about 1000 hours per year at 26.7°C results in 

approximately the same comfort levels as 24.4°C without fans and that the resulting 

savings are more than the cost and energy usage of the fans. James et al. (1996) have 

presented a simulation study using energy balance approach to show the relationship of 

residential cooling energy use to interior thermostat set points and fan use. This study 

considered 400 Florida households. It is found that significant cooling energy use savings 

are possible if ceiling fans are used with higher thermostat set points. In this field, the 

work has been done mostly employs experimental and energy balance approaches. CFD 

simulations are needed for more details of the distribution of velocity, temperature, and 

humidity in the space to predict human thermal comfort more accurately. A CFD solution 

is very detailed as it distributes over the entire space of interest. It can be advantageous to 

use only parts of the numerical solution within a small zone that encloses the human body 

model to predict thermal comfort, rather than using the solution in the entire space. This 

allows the predictions of thermal comfort closer to the condition of the human body. 

Chapter 8 presents an analysis on airflow and heat transfer in a residential air-

conditioned room with a ceiling fan. The room model includes a person standing in the 
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middle of the room, under the ceiling fan and a light set attached to it. Cold air is supplied 

to the room through high sidewall grilles and exhausted through low sidewall grilles on 

the opposite wall. The distributions of velocity, temperature, and humidity in the room 

were expected to provide a detailed description of the transport phenomena that took 

place in the space of interest. Thermal comfort was estimated for one case with no ceiling 

fan and three other cases with different fan normal air speed for a parametric analysis to 

show the effect of using ceiling fan on thermal comfort. The effects of ceiling fan to 

human thermal comfort and the difference of the predictions of thermal comfort in the 

local zone or the entire space were to explore. This work is the first one that uses CFD 

simulation to model fluid flow and heat transfer and to predict human thermal comfort in 

indoor space with ceiling fan. 

Health care facilities, machine shops, manufacturing and chemical processing 

facilities, and other commercial occupancies require ventilation and air conditioning for 

thermal comfort as well as for the removal of contaminants and other pollutions. A good 

design of ventilation and air conditioning system provides a healthy and comfortable 

environment for patients, workers, and visitors. Poorly ventilated workspaces not only 

make people feel uncomfortable but also increase the risk of getting people infected or 

intoxicated since the concentration of air borne pathogens or other kinds of toxic 

chemicals can be high. The design of a Heating, Ventilating, and Air-Conditioning 

(HVAC) system for an operating room aims to prevent the risk of infections during 

surgical operations while maintaining an adequate comfort condition for the patient and 

the surgical staff. Proper indoor comfort condition and indoor air quality are prerequisites 

for securing a safe and suitable environment for an operating room. There are standards 
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to guide the design of air-conditioning systems for operating rooms around the world 

among which the American Institute of Architects has guidelines (AIA, 2001) for the 

design and construction of hospitals and health care facilities. On HVAC design point of 

view, The American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE, 1995) recommends general guidelines for an operating room as follows: that 

temperature should be kept in the range of 68–76°F (20–24°C), that relativity humidity 

should be kept between 50% and 60%, that positive air pressure should be maintained, 

and that all air exhausted with no recirculation is preferred. 

A number of experimental studies have been presented about infections and 

related factors in operating rooms. Woods et al. (1986) presented a project to identify and 

demonstrate control strategies that could reduce energy requirements whereas not 

producing harmful effects on the environmental quality within the operating room. The 

project was done through extensive literature search, development of mathematical and 

biophysical models, and analysis of data obtained in two existing operating rooms with 

different system performance characteristics. Lewis (1993) studied the influence of room 

air distribution on the infection rate in an operating room and concluded that air 

distribution plays an important role in maintaining the proper environmental condition 

within a surgical room. Conventional operating room HVAC distribution systems may be 

entirely satisfactory when properly designed, balanced, and maintained if postoperative 

infection is not a significant problem. More effective air distribution will be justified 

when the infection problem has more severe consequences or results in a higher cost of 

treatment. Memarzadeh (2000) proposed a methodology for minimizing contamination 

risk from airborne organisms in hospital isolation rooms. The results show that the 
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number of particles deposited on surfaces and vented out is greater in magnitude than the 

number killed by ultraviolet (UV) light, suggesting that ventilation plays an important 

role in controlling contaminant level. Memarzadeh and Manning (2003) presented an 

extensive study on operating room ventilation systems and their effect on the protection 

of the surgical site, focusing on preventing the risk of postoperative infection from many 

factors including patient factors, surgical field factors, room factors, and HVAC factors. 

Mora et al. (2001) studied thermal comfort in operating rooms. The thermal 

environment was studied in two operating rooms at a hospital. Thermal comfort was 

estimated based on the PMV-PPD model (proposed by Fanger, 1970; widely adopted; 

details can be found in the Fundamentals Handbook by ASHRAE, 2005) in addition to 

questionnaires. It was concluded that the only means to provide thermal comfort for the 

surgical staff was to eliminate or to minimize the heat transfer from the surgical lights. 

They suggested that more research is needed to evaluate an acceptable thermal 

environment in operating rooms. It can be observed that there is a need to predict ambient 

conditions within an operating room. Balaras et al. (2002) presented an overview of 

general design for acceptable indoor conditions related to HVAC systems in hospital 

operating rooms. Audits of 20 operating rooms at 10 hospitals were recorded covering a 

wide range of information on construction, ownership, type and condition of HVAC and 

auxiliary systems. Data on the assessment of the indoor conditions from 560 medical 

personnel working in-situ were also collected based on personnel questionnaires. Kameel 

and Khalil (2003) proposed guidance to architectural and mechanical engineering 

designers to optimize the comfort and hygiene conditions with optimum energy utilizing 

efficiency for operating theatres. This guidance focused in assessing the influence of the 
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architectural and mechanical design on the HVAC airside system design and 

consequentially on the air quality, hygiene level, and energy utilization. Later, Khalil and 

Kameel (2004) discussed on the balance between thermal comfort and air quality in 

healthcare facilities to optimize the Indoor Air Quality (IAQ) from the viewpoint of the 

air conditioning design. 

The increasing development of CFD in recent years have opened the possibilities 

of a low-cost yet effective method for improving HVAC system in the design phase, with 

fewer physical experiments required. Memarzadeh and Manning (2000) studied the 

performance of a ventilation system in a typical patient room using CFD modeling. They 

were able to predict the necessity of using baseboard heating in extreme weather 

conditions. In addition, the validation of various supply air diffuser models gives useful 

guidelines on CFD modeling for HVAC applications. Hirnikel et al. (2002) investigated 

contaminant removal effectiveness (CRE) of three air distribution systems for a 

bar/restaurant by using CFD modeling. The CRE was considered for both particulate and 

carbon monoxide, which were used to represent the environmental tobacco smoke (ETS), 

and for two different ventilation rates. The results showed that air flow direction can 

reduce people’s exposure to contaminants. Memarzadeh and Manning (2002) simulated 

contaminant deposition in an operating room using CFD air flow modeling and showed 

that a laminar flow condition is the best choice for a ventilation system when contaminant 

deposition is considered. The contaminant considered in this simulation study was 

particle-type squames, or skin scales, around 10 microns in size, released from three 

locations in the room and tracked to determine if they would impinge on either the 

surgical site or a back table. Kameel (2003) presented the use of a three dimensional 
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time-dependent CFD model to assess the air flow characteristics in different air-

conditioned spaces. It was found that the extraction port location is a critical design factor 

and has a direct effect on heat removal efficiency and the energy efficiency at the airside 

of air-conditioning systems. Chow and Yang (2003) used CFD analysis to simulate the 

temperature distribution, air flow pattern, and contaminant dispersion supported by 

observations and field measurements in a case study. They concluded that the application 

of CFD is useful to help understand the adequacy of the ventilation design in renovation 

planning to match up-to-date engineering standards. Cheong and Phua (2006) 

investigated the air flow and pollutant distribution patterns in a “negative pressure” 

isolation room by means of objective measurement and CFD modeling based on three 

ventilation strategies consisting of several combinations of two air supply diffusers or 

grilles and two extract grilles mounted on the ceiling or on the wall above the floor level. 

The results show that extraction at a low vertical level is very effective in removing 

pollutant at the human breathing zone as compared to extraction at ceiling level. Lee et 

al. (2007) studied the effects of air inlet types consisting of a wall jet and ceiling diffuser 

on the dispersion of contaminant concentrations in an experimental room with no 

occupant and with an occupant model present. The results show that the air inlet type is 

an important physical determinant of the distribution of airborne contaminant 

concentrations because different air inlet types generate different airflow patterns and 

thus different spatial concentration patterns. 

CFD simulation give the numerical solution of the variables of interest (velocity, 

temperature, etc.), which is useful for understanding the transport phenomena and is a 

means for qualitative assessment of an indoor space but not enough to assist a successful 
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design without a parametric study and additional analysis for optimization. Quantitative 

assessment is usually required for design optimization. The use of techniques from other 

fields, such as experimental design, is needed in the design process. A particular HVAC 

application requires particular objectivities. For operating rooms or health care facilities 

in general, thermal comfort and contaminant removal are the most important factors and 

need to be optimized considering both. Critical HVAC indoor spaces such as operating 

rooms are designed traditionally based on the experience of the designer as well as the 

existing spaces that are already in successful operation. Although CFD simulation can 

provide the numerical solution, it cannot replace the experience of the designer. Thus, to 

make the use of CFD solution more useful such that it can partly compensate for the lack 

of experience in a designer, a systematic procedure for processing the results from the 

parametric studies to optimize the design is needed. 

Chapter 9 presents a 3-D analysis for steady-state airflow and heat transfer in a 

hospital operating room. The room model includes a patient lying on an operating table, 

four surgical staff members standing around, and surgical lights above the patient. Cold 

clean air is supplied to the room through high sidewall grilles and exhausted through low 

sidewall grilles on the opposite wall. Effects of horizontal locations of supply and exhaust 

grilles on thermal comfort and contaminant removal were studied. General linear models 

(GLM) for thermal comfort and contaminant removal as functions of these locations were 

developed for design optimization. This demonstrates a systematic procedure to employ 

the techniques needed for the optimization of the design. 

Although the use of CFD simulation is exponentially increasing in recent years 

for various HVAC indoor space applications, there is a lack of guideline in setting up 
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CFD models and running simulation for such applications. The recent version of the 

Handbook by ASHRAE (2005) only has an introductory guideline for the use of CFD 

method for indoor environmental modeling. Although CFD tools (software) are widely 

available nowadays, there are still difficulties in using them for a particular task. Among 

the basic steps to set up a CFD model, the first step of geometry creating and meshing is 

tedious and time consuming, especially the meshing part. An effective meshing strategy 

is of great importance to reduce the data-preparation stage, which can consume up to 

80% or more of the labor-hours required (FIDAP Documentation, Fluent, 2005). 

Chapter 10 proposes a practical guideline for the use of CFD method in indoor 

spaces modeling as complementary to the introductory guideline given in the Handbook 

by ASHRAE (2005). The guideline focuses on the meshing with a systematic approach 

that allows the development of a mesh of high quality and high flexibility. In addition, 

the mesh generation can be considered semi-automatic, therefore reduce time and labor, 

which is important to the cost-effectiveness. Basic and common practice of other steps in 

CFD modeling and simulation are also presented. This guideline will help users who are 

new to CFD method get familiar with the field conveniently. 
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Chapter 2 Computational Modeling and Simulation 

2.1 Governing Equations 

To describe the fluid flow, and heat and mass transfer phenomena inside a space 

of interest, it is necessary to determine the distributions of velocity, temperature, and 

species concentrations over the entire computational domain by solving the system of 

governing equations for the conservation of mass, momentum, and energy. The fluids 

considered in this work are liquid hydrogen for the problems involving cryogenic storage 

tanks and air for the problems involving HVAC&R indoor spaces. Liquid hydrogen in 

storage tank can be considered incompressible. For the problems presented in this work, 

the fluid is considered as incompressible and having constant properties.  

All the flows in these problems considered are turbulent by nature. To model the 

turbulent flow, Reynolds' time averaged equations are employed. Detailed explanations 

on the formulation of the governing equations and Reynolds decomposition approach for 

turbulence modeling can be found in White (1991) and Kays et al. (2005). The general 

governing equations applicable for all the problems presented in this work are reviewed 

briefly in the following subsections. 

2.1.1 Conservation of Mass 

The conservation of mass (equation of continuity) of a fluid can be written in the 

most general form as: 
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For an incompressible (constant-density) fluid, Equation (2.1) can be rewritten as: 
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For multi-component fluid flows, if the diffusivity of the species in the carrying 

fluid is a constant, the conservation of mass of a species can be written as: 
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2.1.2 Conservation of Momentum 

The conservation of momentum (Navier-Stokes equations) of a fluid in the most 

general form can be written as: 
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The general deformation law for a Newtonian viscous fluid can be written as: 
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For a constant-property fluid (constant density or incompressible and constant 

viscosity), with the use of Equations (2.2) and (2.5), Equation (2.4) can be rewritten as: 

  i
jj

i

ij

i
j

i X
xx

u
x
p

x
uu

t
u

+
∂∂

∂
+

∂
∂

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂

∂ 2

μρ  (2.6) 

If the body forces are negligible, Equation (2.6) becomes: 
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The buoyancy effect, which is always significant in HVAC&R spaces, can be 

introduced into Equation (2.6) using the Boussinesq approximation as: 
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2.1.3 Conservation of Energy 

Assuming that heat conduction follows Fourier's law, the conservation of energy 

of a fluid flow can be written as: 
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Assuming that there is no heat generation, that the flow has low velocity such that 

the dissipation function is negligible, that the pressure-gradient term is negligible, and 

that density and thermal conductivity are constants, Equation (2.9) can be rewritten as: 
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2.1.4 Mixing Length Turbulence Model 

The mixing length model is a simple yet effective turbulence model involving a 

single unknown parameter called the mixing length or the mean free path for the mixing 

of turbulent fluid flow. The mixing length model works well for relatively simple flows 

such as wall boundary-layer flows, and jet and wake flows without requiring additional 

governing equation. For the problems under study in this work, this turbulence model can 

be employed on considering that the rather complex flow in the computational domain is 

composed by several regions of simple turbulent flows (wall boundary-layer and jet) 

separated far enough that the transport and history effects of turbulence are insignificant 



www.manaraa.com

 23

(FIDAP Documentation, Fluent, 2005). Details on turbulence modeling can be found in 

Kays et al. (2005) and Rodi (1984). The effective viscosity can be written as: 

  t0 μμμ +=  (2.11) 

The eddy viscosity can be written in general form (Rodi, 1984) as: 
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where 

  { }cnm 09.0,min lll κ=  (2.13) 

Similarly, the effective thermal conductivity can be written as: 

  t0 kkk +=  (2.14) 

where 

  
t

tp
t Pr

μc
k =  (2.15) 

In Equations (2.11) and (2.14), κ is the von Kármán constant which usually takes 

the value of about 0.41 and Prt is the turbulent Prandtl number which usually takes the 

value of about 0.85 (Kays et al., 2005). 

2.2 Boundary Conditions 

To define the problem completely, appropriate boundary conditions are required 

on all boundaries of the computational domain. The boundary conditions applicable for 

the problems presented in this work may have the following forms. 

 Prescribed velocity: 0Vui =  on Ω (2.16) 

 Prescribed temperature: 0TT =  on Ω (2.17) 
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 Prescribed concentration: 0ωω =j  on Ω (2.18) 

 Prescribed heat flux: 0q
n
Tk =

∂
∂  on Ω (2.19) 

 Prescribed mass flux: 0,j
j

j q
n

D =
∂

∂ω
ρ  on Ω (2.20) 

 Linear heat transfer: ( )0TTh
n
Tk −=

∂
∂  on Ω (2.21) 

2.3 Relevant Formulas for Indoor Environment 

For indoor environment modeling, relative humidity and models for the prediction 

of thermal comfort are of great importance. Relative humidity can be used combined with 

temperature for a simple assessment of human thermal comfort in an existing space. The 

PMV-PPD model (PMV: Predicted Mean Vote; PPD: Predicted Percent Dissatisfied) is 

widely used and accepted for design and field assessment of comfort condition. 

2.3.1 Relative Humidity 

From the solution of the primary variables in an HVAC simulation: temperature, 

pressure, and water vapor concentration, relative humidity can be computed using the 

formulas given by ASHRAE (2005) as: 
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=  (2.22) 
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2.3.2 PMV-PPD Model 

This model for prediction of thermal comfort is adopted by ASHRAE (2005) and 

is widely used in practice. The predicted mean vote (PMV) index is a parameter for the 

prediction of thermal comfort in an occupied zone based on conditions of metabolic rate, 

clothing, air speed besides temperature and humidity. The PMV can be computed using 

the formulas given by ASHRAE (2005) as: 
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  clcl 155.0 IR =  (2.29) 

The PMV index refers to the ASHRAE thermal sensation scale: 

+3 hot 

+2 warm 

+1 slightly warm 

0 neutral 
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–1 slightly cool 

–2 cool 

–3 cold 

ANSI/ASHRAE Standard 55 (2004) recommends that the acceptable thermal 

environment for general comfort is -0.5 < PMV < 0.5. The predicted percent dissatisfied 

(PPD) can be estimated based on PMV using the formula given by ASHRAE (2005) as: 

  ( )[ ]24 PMV2179.0PMV03353.0exp95100PPD +−−=  (2.30) 

2.4 Numerical Solution Procedure 

For a problem under study, the governing equations and the boundary conditions 

are solved using the finite element method (FEM). In FEM, the computational domain is 

discretized into elements. In each element, velocity components, pressure, temperature, 

and species concentrations, if any, are approximated by using the Galerkin procedure 

(Fletcher, 1984) that leads to a set of algebraic equations that defines the discretized 

continuum. The finite element method has a long and successful history in the solution of 

engineering analysis problems. 

2.4.1 Preprocessing and Solution Algorithms 

A mesh of small elements is required for a finite element solution. For problems 

involving fluid flow and heat and mass transfer, due to the formation of boundary layers, 

several layers of regular elements of higher density (finer mesh) need to be assigned 

along the fluid-solid interfaces where high rates of momentum and heat transfer exist. 

Finer element mesh is also required at complex geometry boundaries for improving the 

accuracy of approximating curves by line segments. The distribution of element size in a 

computational domain is determined from a mesh independence study by systematically 
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changing the mesh density in all space directions, both globally and locally, to obtain a 

mesh that can give solutions of acceptable accuracy. 

The FI-GEN module of FIDAP (Fluent, 2005) and the software GAMBIT (Fluent, 

2006) were used for geometric modeling and mesh generation. The mesh were designed 

such that it can accommodate changes of geometric parameters and capable for automatic 

meshing. The computational domain is always decomposed into several sub-domains: 

• Small sub-domains that cover the finer mesh regions and require special 

treatments and close inspections 

• Large sub-domains that cover most of the area of the computational domain 

and have simple geometry ready for automatic meshing with regular elements 

The FIPREP module of FIDAP (Fluent, 2005) was used for setting up the physics 

of the computational model (material properties, initial and boundary conditions, etc.), 

and the simulation control options (solution algorithm, convergence tolerances, etc.). The 

physics-setting step is straightforward. 

The application of the Galerkin finite-element procedure to the governing 

equations results in a set of nonlinear algebraic equations presented in matrix form as: 

  ( ) FuuK =  (2.31) 

where K is the global matrix 

 u is the global vector of unknowns (ux, uy, uz, p, T,...) 

 F is a vector of the effects of body forces and boundary conditions 

The residual is defined as: 

  ( ) ( ) FuuKuR −=  (2.32) 

If u is an exact solution, then R(u) should be zero. 
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Equations (2.31) are nonlinear and have to be solved using iteration procedure. 

The fully coupled successive substitution approach and the segregated approach were 

used for solving the problems presented in this work. 

Fully coupled algorithms: all governing equations are solved in a simultaneous 

coupled manner. Successive substitution is a simple solving scheme using fully coupled 

approach. At an iteration i, the iteration computation can be written as: 

  ( ) FuuK =+1ii  (2.33) 

The fully coupled successive substitution algorithm can be used for most of the 

axisymmetric or 2-D problems. It has two convergence criteria: the relative error criterion 

that checks if the relative error at an iteration is less than a preset tolerance and the 

residual criterion that checks whether the ratio of the residual vector at an iteration to a 

reference residual vector is less than another preset tolerance. The convergence criteria 

can be written as: 

  u
i

ii ε≤
−

−

−

1

1

u
uu

 (2.34) 

  
( )
( ) R

i ε≤
0uR

uR
 (2.35) 

The sign ⋅  represents a norm operator, usually the Euclidean norm. The iterative 

procedure is considered converged when both criteria are satisfied. 

For 3-D models, the number of elements and nodal points are usually so large that 

the use of a fully coupled algorithm may require computing resources that exceed those 

available. In that case, the segregated algorithm can be used (in some big size problems, 

this may be the only choice) with only the relative error convergence criterion (2.34). 
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The segregated solution algorithm avoids the direct formation of a global system 

matrix. Instead, in each iteration, only one unknown is solved for, while the other keep 

their previous values. The next iteration is used to solve for the next unknown. Due to its 

sequential and uncoupled nature, the segregated approach requires less disk storage but 

more iterations than the fully coupled approach. The formulation of the segregated 

algorithm is quite involved and can be found in FIDAP Documentation (Fluent, 2005). 

The FISOLV module of FIDAP (Fluent, 2005) was used to solve the set of finite 

element equations (2.31). 

2.4.2 Postprocessing 

The FIPOST module of FIDAP was used for post processing. The solution for the 

primary variables (velocity, pressure, temperature, etc.) is available in the database file 

*.FDPOST. FIPOST was used directly for computing values such as mean values, fluxes, 

etc. of the variables of interest. FIPOST was also used to export the solution data into 

FIDAP neutral files (text files with predefined format to store FIDAP solution in human 

readable form, usually used for transfer FIDAP solution to another computing 

environment).  

For computing relative humidity in HVAC problems, the author has developed a 

FIDAP subroutine implementing Equations (2.22) to (2.24) in FORTRAN (Appendix 

A:). This subroutine was compiled and produced a customized function for FIDAP used 

for computing the distribution of relative humidity based on the distributions of pressure, 

water vapor concentration, and temperature from the numerical solution. 

The technical computing program Matlab (The MathWorks, 2006) was used to 

compute and generate 2- and 3-D visualizations for the numerical solutions from FIDAP 
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imported into MATLAB through the neutral files. The statistical analysis software SAS 

(SAS Institute, 2006) was used to compute the generalized linear models (GLM) in 

Chapter 9 

2.5 Problems Under Study 

Seven problems reported in this work have their characteristics summarized in 

Table 2.1. They are presented in an order such that the difficulty from a computational 

point of view increases gradually. The mentioned difficulty is in the sense of that in 

setting up the model, time and computing resources required, or in handling the 

simulation process. 

Table 2.1 Summary of problems under study 

Problem # Chapter Fluid System Model Analysis Body force

1 3 Liquid hydrogen Open Axisymmetric Steady-state None 

2 4 Liquid hydrogen Closed Axisymmetric Steady-state None 

3 5 Liquid hydrogen Closed 3-D Steady-state None 

4 6 Liquid hydrogen Closed Axisymmetric Transient None 

5 7 Air Closed 2-D, 3-D Steady-state Buoyancy

6 8 Air, 1 species Open 2-D Steady-state Buoyancy

7 9 Air, 2 species Open 3-D Steady-state Buoyancy

 

The computational difficulty for each problem appears in different aspects that 

can be simplified into the following rules: 

• Multi-component flows (problems 6 and 7) are more difficult than single-

component flows (problems 1–5) 
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• Closed systems (problems 2–5) are more difficult than open systems 

(problems 1, 6, and 7) 

• 3-D models (problems 3, 5, and 7) are more difficult than axisymmetric or 2-

D models (problems 1, 2, 4, 5, and 8) 

• Transient analysis with largely different time steps between stages (problem 

4) are more difficult than steady-state analyses (problems 1–3 and 5–7) 

• Momentum equations with buoyancy force (problem 5–7) are more difficult 

than those without body force (problems 1–4) 
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Chapter 3 Analysis of Heat Transfer in Cryogenic Liquid Hydrogen Tank with Arrays of 
Injection Nozzles 

3.1 Problem Description 

Figure 3.1 presents the schematic of a complete ZBO cryogenic liquid storage 

system including external cooling system and a cylindrical tank with spheroidal top and 

bottom. The tank wall is made of aluminum. A multi-layered blanket of cryogenic 

insulation (MLI) has been attached on the top of the aluminum shell. The tank is filled 

with liquid hydrogen. An inlet tube is attached to the top shell of the tank at one end and 

connected to a nozzle head submerged in the liquid at the other end such that the axis of 

symmetry or the centerline of the whole assembly is coincident with the centerline of the 

tank. The nozzle head has many nozzles as circular holes with their centers distributed on 

concentric circles on its front face. This study considers a nozzle head with three groups 

of nozzles: one single nozzle at the center and two polar arrays of nozzles whose centers 

are uniformly and densely distributed at full span and half span of the nozzle head. The 

annular outlet opening, also at the top of the tank, is concentric with the inlet opening and 

its outer radius is calculated such that their cross sectional areas are equal. Normally, 

even with the most efficient insulation structure applied, there is always heat leak from 

the surroundings into the fluid inside the tank. To prevent the heat leak from eventually 

raising the liquid hydrogen to boiling point, colder liquid hydrogen is pumped through 

the inlet tube to the nozzle head and injects into the bulk fluid inside the tank through 

nozzle holes to displace the heated fluid that exits the tank through the outlet opening on 
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the top shell. The heated fluid then goes into the external cooling system, rejects the heat 

to cool down and returns to the inlet to complete a working cycle. Steady-state fluid flow 

and heat transfer phenomena for liquid hydrogen inside the tank were studied. 

The symmetry of the domain suggests the use of an axisymmetric model instead 

of a costly 3-D model, provided that the nozzles at full span and half span on the nozzle 

head are distributed densely enough to be approximated as annulus openings. Figure 3.2 

shows the used axisymmetric model with essential dimensions of the tank and the inlet 

tube-nozzle head assembly (the actual computational domain only occupies the right half 

of the sketch but the whole axial cross section of the tank is shown for clearer illustration 

purpose). The cylindrical body and the ellipsoidal top and bottom of the tank wall are 

shown as solid curves including a straight line and elliptic arcs. In Figure 3.2, the inlet 

tube-nozzle head assembly, whose axis is coincident with the centerline of the tank and 

also the z-axis, is shown as solid lines with gaps representing the three groups of polar 

distributed nozzle openings. 

The essential dimensions of the storage tank are denoted in general form using the 

capital letters A–D, F–H, L–N, P, and Q shown in Figure 3.2. This study only considers 

the effects of the diameter of the inlet tube D, the depth of the nozzle head from the top of 

the tank H, and the radius or the span of the nozzle head L. The fixed dimensions used for 

this study are given in Table 3.1. 

Table 3.1 Numerical values of fixed dimensions in Figure 3.2 

Dimension A B C G M N P 

Value, m 1.50 0.65 1.30 0.05 0.01 0.02 0.02 
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Figure 3.1 Schematic of cryogenic storage system with injection nozzle head 
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Figure 3.2 Axisymmetric model and essential dimensions 
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The design parameters under investigation D, H, and L can take several different 

values corresponding to eleven simulation cases shown in Table 3.2. 

Table 3.2 Simulation cases for storage tank with nozzle head 

Case # H, m L, m D, m H* L* D* Notes 

1 1.3 1.0 0.15 0.87 0.67 0.10 Base H, L, D values 

2 0.8 " " 0.53 " " Low H value #1 

3 1.1 " " 0.73 " " Low H value #2 

4 1.5 " " 1.00 " " High H value #1 

5 1.8 " " 1.20 " " High H value #2 

6 1.3 0.9 " 0.87 0.60 " Low P value 

7 " 1.1 " " 0.73 " High P value #1 

8 " 1.2 " " 0.80 " High P value #2 

9 " 1.3 " " 0.87 " High P value #3 

10 " 1.0 0.10 " 0.67 0.07 Low D value 

11 " " 0.20 " " 0.13 High D value 

 

The dimensions F and Q are calculated from the values of the other dimensions to 

satisfy the given requirements (for F, inlet and outlet areas are the same; and for Q, the 

nozzles in the second group has their centers at half span of the nozzle head) and can be 

calculated using the following formulas: 

  
2

DF =  (3.1) 

  ( )
2

PNMLQ ++−
=  (3.2) 
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The heat leak into the fluid is represented as a heat flux of qwall = 1 W/m² 

uniformly distributed over the entire surface of the tank wall. Cooled supply fluid at Tcool 

= 18 K flows into the tank at a normal velocity of V = 0.01 m/s through the inlet opening. 

The relevant physical properties of liquid hydrogen are taken as constants at a reference 

temperature of 20 K as follows: ρ = 71.1 kg/m³, μ = 13.6×10⎯6 Pa.s, cp = 9.53×10³ 

J.kg⎯¹.K⎯¹, k = 0.0984 W.m⎯¹.K⎯¹. 

3.2 Computational Model 

3.2.1 Governing Equations 

The Reynolds decompositions approach with a mixing length turbulence model is 

used for modeling the fluid flow and heat transfer. The governing equations representing 

the conservation of mass, momentum, and energy for steady state flow of liquid hydrogen 

in the tank as an incompressible fluid of constant properties in microgravity condition can 

be written for the axisymmetric model as: 
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3.2.2 Boundary Conditions 

The boundary conditions on velocity are 

 On inlet opening: Vuu zr == ,0  (3.7) 
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 On tank centerline: 0,0 =
∂

∂
=

r
uu z

r  (3.8) 

 On all solid-fluid interfaces: 0== zr uu  (3.9) 

The boundary conditions on temperature are 

 On inlet opening: coolTT =  (3.10) 

 On tank wall: wallq
n
Tk =

∂
∂  (3.11) 

 On tank centerline: 0=
∂
∂

r
T  (3.12) 

3.2.3 Numerical Solution 

For each simulation case in Table 3.2, a mesh of about 35000 quadrilateral 

elements was generated. Three layers of regular and refined elements of 4 mm height for 

the first layer and growth ratio of 1.25 are assigned along all fluid-solid interfaces where 

high rates of momentum and heat transfer exist. The region inside the inlet tube and 

nozzle head is filled with structured 10 mm-size normal elements by using the map mesh 

option. The rest of the domain is filled with unstructured 12 mm-size normal elements 

using the pave mesh option. A typical mesh generated for the base case (simulation case 

1) is shown in Figure 3.3. The FISOLV module of FIDAP was set up to solve the set of 

nonlinear algebraic equations resulted from the application of the Galerkin finite-element 

procedure to the set of governing equations and boundary conditions, Equations (3.3) 

through (3.12), on the computational domain using the fully coupled successive 

substitution algorithm with a tolerance of 0.0001 for both the relative error and residual 

convergence criteria. The resulting numerical solution gives two components of velocity, 

pressure, and temperature at every nodal point over the entire computational domain. 
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Figure 3.3 Quadrilateral-element mesh for axisymmetric model of storage tank with arrays of injection 

nozzles on nozzle head 
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3.2.4 Dimensionless Parameters 

For better consideration in general context, the geometric design parameters D, H, 

and L can be presented in dimensionless form as D*, H*, and L* (also given in Table 3.2) 

by scaling the original dimensions to A (the radius of the tank) as: 

  AD*D =  (3.13) 

  AH*H =  (3.14) 

  AL*L =  (3.15) 

As a constant speed V at the inlet opening is considered, the inlet diameter D can 

also be presented in dimensionless form by using the Reynolds number defined as: 

  
μ

ρ DRe V
=  (3.16) 

The arc length coordinate is introduced for analyzing the local heat transfer on the 

tank wall. It is measured along the generatrix of the surface of revolution that forms the 

tank wall from the center of the bottom. The total length of the generatrix is calculated as 

S = 4.7 m. Similar to the geometric design parameters, the arc length coordinate is scaled 

to the characteristic length A as: 

  A* ss =  (3.17) 

The distributions of fluid speed and temperature can be studied quantitatively by 

examining the average and standard deviation of speed as well as the maximum, average, 

and standard deviation of temperature. Fluid speed and temperature can be presented in 

dimensionless form as: 

  
V
UU =*  (3.18) 
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  ( )
A
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The thermal performance of the heat pipe-pump-nozzle system can be assessed by 

using a linear heat transfer model with the heat transfer coefficient defined as: 

  
coolwall

wall

TT
qh

−
=  (3.20) 

The heat transfer coefficient can be expressed in term of the dimensionless 

Nusselt number (Nu = hA/k) as: 

  ( ) *
wallcoolwall

wall 1ANu
TTTk

q
=

−
=  (3.21) 

The average Nusselt number taken over the tank wall can be computed as: 

  ( )∫=
S

dss
S 0

Nu1Nu  (3.22) 

3.3 Results and Discussion 

Figure 3.4 shows the distributions of fluid velocity and temperature for the base 

case (simulation case 1). In Figure 3.4a, the color of the filled background represents the 

magnitude of velocity or speed and the streamlines shows the directions of the fluid flow. 

In Figure 3.4b, the temperature distribution is shown by a filled plot with the color range 

representing the value of temperature. The cold fluid enters the inlet opening at full speed 

0.01 m/s, flows along the inlet tube as a typical flow in circular pipe, to the nozzle head, 

and then spreads radially inside the nozzle head before injecting into the bulk fluid. 

Temperature inside the inlet tube and the nozzle head does not change much thus is quite 

uniform and is as low as the inlet temperature. Once the flow reaches the front face of the 

nozzle head, it splits into three groups of flow (labeled 1, 2, and 3 in Figure 3.4a) 
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corresponding to three groups of nozzle openings on the nozzle head. The first group 

goes straight ahead through the center nozzle and directly injects into the bulk fluid at a 

speed as high as that at the inlet opening, creates a disturbance in a local region along the 

centerline and gets retarded shortly by the massive stagnant bulk fluid at the bottom of 

the tank. This flow gives the bulk fluid a small region of low temperature localized along 

the centerline right outside the nozzle. As the rest of the fluid spreads in radial direction 

inside the nozzle head, the flow cross section area increases thus the fluid velocity 

decreases and the flow loses momentum. The flow tends to remain on its radial direction 

and travel the full span of the nozzle head rather than to change direction to exit at half 

span. Therefore, the second group of flow corresponding to the second nozzle group is 

quite weak and only can create small disturbances locally. The third nozzle group at full 

span of the nozzle head is where the supply cold fluid injects into the bulk fluid more 

strongly and shows significant effects on cooling. Also drawn by the pressure gradient 

toward the outlet opening, the flow exits the nozzle head at a direction that bends toward 

the wall of the tank. It reaches the wall and then moves upward while sweeping along the 

wall toward the outlet opening at quite high speed due to the influence of the low 

pressure there. Under the effect of this flow, a strong circulation is formed in the region 

above the nozzle head (labeled as C1 in Figure 3.4a). This third circulation creates a well 

mixed thus low temperature region there. Since this flow cannot reach the top shell of the 

tank, a region of stagnant fluid exists there (labeled as S1 in Figure 3.4b). It can be 

observed in Figure 3.4b that this region has higher temperature and that temperature 

decreases from the wall inward in isothermal layers that shows the heat conduction 

pattern. As the third flow injects into the bulk fluid, it also affects the region under the 
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nozzle head by combining with the second flow to form a circulation there (labeled as C2 

in Figure 3.4a) resulting in another well-mixed region of low temperature but not as low 

as the one in the region above the nozzle head. The fluid between this region and the low 

temperature region created by the first flow is barely moved and results in higher 

temperature (labeled as S2 in Figure 3.4b). The spot of maximum temperature can be 

resided in one of these two stagnant regions and right at the tank wall. 

The patterns of fluid flow and temperature distributions shown above suggests 

that if the nozzle head is placed deep down toward the bottom of the tank, it may extend 

the well mixed region above the nozzle head as well as reduce the stagnant region under 

it thus improve the cooling performance of the system. Figure 3.5 shows the velocity 

field and temperature distribution for simulation case 5, which has the largest value of the 

nozzle head depth H among the simulations. It can be observed that the patterns of both 

velocity and temperature distributions are similar to those of the base case. The well 

mixed-low temperature region above the nozzle head extended as expected. The region 

under the nozzle head has a lower and more uniform temperature compared to that of the 

base case especially the stagnant-higher temperature region at the bottom of the tank 

(labeled as S2 in Figure 3.5b). However, since the nozzle head is put that far away from 

the top, the fluid has to travel a longer distance to reach the top of the tank toward the 

outlet. Therefore, it cannot reach as closely to the top shell of the tank wall as in the base 

case to transport the heat away and reduce the temperature there. As a result, the region 

of stagnant fluid of high temperature there (labeled as S1 in Figure 3.5b) expands much 

larger. That means there will be more chances for a higher maximum temperature spot to 

exist in that region. 
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(a) Streamlines and speed, mm/s  (b) Temperature, K 
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Figure 3.4 Distributions of velocity and temperature, simulation case 1 (base case) 
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Figure 3.5 Distributions of velocity and temperature, simulation case 5 (H* = 1.2) 
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Figure 3.6 presents the effects of the depth of the nozzle head on the distributions 

of speed and temperature. The data are from simulation cases 1–5 that realize five values 

of H and fixed values for the other geometric parameters. The depth of the nozzle head H 

is measured from the top of the tank to the front face of the nozzle head and presented in 

its dimensionless form H*. Figure 3.6a shows that as H* increases the dimensionless 

average speed shows no significant changes around 0.01 but the dimensionless standard 

deviation increases linearly from 0.035 to 0.050. This means that the depth of the nozzle 

head increases the non-uniformity of the speed field but shows no effect in average. 

In Figure 3.6b, as H* increases from 0.53 to 1.20, the dimensionless maximum 

temperature decreases from 0.2 to it minimal value of 0.07 at H* = 1, then increases to 

0.09 at H* = 1.20. The dimensionless standard deviation varies from 0.02 to 0.01 in a 

similar trend. The dimensionless average temperature gradually decreases from 0.02 to 

0.01 as H* increases from 0.53 to 1.20. These results confirm the previous observations 

that if the nozzle head is closer to the bottom of the tank, the cooling effectiveness can be 

improved (lower average temperature) but the anti-boiling-off effectiveness can only be 

improved up to an optimum of H* = 1.0. The latter may suffer a loss (higher maximum 

temperature) if H* increases further (H* > 1). In actual dimensions, this optimum is at 

about the middle of the height of the tank slightly shifted toward the bottom. 

Figure 3.7 presents the results from simulation cases 1 and 6 through 9 on the 

effects of the span (radius) of the nozzle head L represented by its dimensionless form 

L*. The increase of L is in fact the increase of nozzle openings area for the second and 

third groups of nozzles since the larger span, the larger the circles on which the centers of 

the nozzles distributed thus more nozzles for each group. 
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Figure 3.6 Effect of depth of nozzle head on distributions of speed and temperature 
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Figure 3.7 Effect of span of nozzle head on distributions of speed and temperature 
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In Figure 3.7a, it can be observed that as L* increases from 0.60 to 0.87, the 

dimensionless average speed decreases linearly and very slightly from 0.013 to 0.010 

while the dimensionless standard deviation remains at a value of 0.043. This suggests that 

the span of the nozzle head has no significant effect on speed distribution. 

Figure 3.7b shows that all the parameters of temperature distribution increase as 

L* increases from 0.60 to 0.87, dimensionless maximum temperature from 0.08 to 0.09, 

dimensionless average temperature from 0.01 to 0.02, and dimensionless standard 

deviation from 0.008 to 0.011. A value of L* can be selected around the base value L* = 

0.67 where the maximum temperature take its lowest value (Figure 3.7b) or at least in the 

range 0.6–0.75, without significant loss on thermal effectiveness. 

Figure 3.8 presents the effects of Reynolds number that represents the inlet 

diameter D on the distributions of speed and temperature from the results of simulation 

cases 1, 10 and 11 where D has three different values and the other geometric parameters 

remain at their base values. It can be observed in Figure 3.8a that both dimensionless 

average speed and standard deviation increase in a linear fashion as the Reynolds number 

increases from 5200 to 10400, in the ranges 0.005–0.024 and 0.028–0.058, respectively. 

This suggests that increasing inlet diameter results in higher fluid speed overall, which is 

well expected since the change of the inlet diameter is directly proportional to the change 

of supply flow rate while the inlet velocity remains the same, and higher non-uniformity 

in the flow speed field. 

Figure 3.8b shows that the dimensionless maximum and average temperatures 

both decrease, respectively from 0.13 to 0.07 and from 0.03 K to 0.01, as the Reynolds 

number increases from 5200 to 10400. However, as the Reynolds number increases, the 
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slope of the temperature curve reduces significantly, implying that the inlet diameter 

should be designed at a proper value such that the positive effects it brings should over-

compensate the energy used for pumping fluid at higher flow rate. This proper value for 

inlet diameter can be only determined by considering the total energy consumption of the 

entire system including devices external to the tank such as the pump which is beyond the 

scope of the present study. For the same range of Reynolds number, the dimensionless 

standard deviation of temperature also decreases from 0.02 to 0.005, which shows that 

mixing effectiveness (more uniform temperature distribution) can also be improved with 

higher flow rate. 

Figure 3.9 shows the dimensionless wall temperature and Nusselt number with 

selected cases of geometry settings with base, low, and high values for each geometric 

parameter. The base case has H* = 0.87, P* = 0.67, and D* = 0.10 (H = 1.3 m, and P = 

1.0 m, G = 0.15 m). The legends for other cases only show the parameter that is different 

from the base case. Since the highest temperature should be located at the wall where the 

heat flux penetrates, the maximum wall temperature is also the maximum temperature in 

the entire fluid body. 

In Figure 3.9a, it can be observed that for most cases there are two peaks or 

raising regions on the graph representing two stagnant regions of high temperature. The 

case of H* = 0.53 (low H) have only one outstanding peak at the bottom of the tank. This 

is the case where the nozzle head is very close to the top and therefore the stagnant region 

at the top is eliminated but the stagnant region at the bottom is expanded to a wide region 

with highest maximum temperature compared to that of other cases. The base case as 

well as most of the other cases has the notably higher first peak (stagnant region at the 
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bottom) and the second peak (stagnant region at the top) leveled out except for the case 

H* = 1.2 (high H) where both peaks are shown and the peak at the top is higher than the 

peak at the bottom. This means that the maximum temperature spot is resided in the 

stagnant region at the top for the case of high H and in the stagnant region at the bottom 

for the rest. As D* decreases, the maximum temperature spot increases in magnitude as 

expected and moves far away from the center of the bottom. Lowest wall temperature is 

found for the case D* = 0.13 (high D). 

Figure 3.9b shows Nusselt numbers for the same set of cases of geometry settings 

as functions of dimensionless arc length coordinate. Since Nusselt number is inversely 

proportional to temperature difference, its profile is similar to that of wall temperature 

being flipped over. Higher Nusselt number means better thermal performance the system 

has. For all cases, Nusselt number ranges from 5 to 75 with the maximum value (most 

effective heat transfer) belongs to the case of D* = 0.13. 

Figure 3.10 presents the average Nusselt numbers as functions of geometry 

settings. The data were extracted from the same representative set of simulations 

described above. In general, the average Nusselt number ranges from 14 to 39. Lower 

and higher D gives lower and higher Nusselt number, respectively. This means that as the 

inlet diameter increases thus flow rate increases, the average thermal performance of the 

system is improved. If the flow rate is kept unchanged, the average thermal performance 

can be improved by increasing the depth of the nozzle head H. However, this approach 

should be used with caution since it may decrease anti-boiling-off effectiveness as 

discussed previously. The change of span of the nozzle head L shows only small effect on 

the average Nusselt number. 
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Figure 3.8 Effect of inlet diameter on distributions of speed and temperature 
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Figure 3.10 Average Nusselt number as function of geometry setting 

 

3.4 Conclusions 

For this design of ZBO cryogenic storage tank for liquid hydrogen with arrays of 

injection nozzles distributed on a nozzle head, the supply cold fluid discharged through a 

nozzle penetrates into the bulk fluid inside the tank as a submerged jet that mixes with the 

bulk fluid and cools it down as the jet loses its momentum. The results show that higher 

temperature is encountered near the tank wall at two locations on the top and the bottom. 

The nozzle head is best located in the middle part of the tank since this provides better 

anti-boiling-off effectiveness by lowering the maximum temperature of the fluid. Supply 

flow rate can be increased by means of increasing the inlet diameter while maintaining 

the same inlet speed which gives better thermal performance with lower maximum and 

average temperatures. However, as the flow rate increases, higher energy consumption is 
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required for running the pump and the cryocooler. This parameter needs to be designed in 

interaction with others to obtain an optimum efficiency for the whole system. As the span 

of the nozzle head increases, the total area of the nozzle openings increases thus the speed 

of the jets injected into the bulk fluid through the nozzles reduce. This results in a slightly 

rise in both maximum and average temperatures. The best range for this parameter is 

0.60–0.75 the radius of the tank. 

In designing a ZBO cryogenic liquid storage system, the maximum temperature is 

the key factor that needs attention. Location as well as dimensions of the active cooling 

subsystem (in this case, the inlet tube - nozzle head assembly) affect the performance of 

the storage tank at different level. There is no simple way to decide which dimension is 

significant or not. Simulations for parametric study need to be planned and performed to 

determine the effects of each parameter and their interactions. Experimental design can 

be used for planning the parametric study. 
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Chapter 4 Analysis of Heat Transfer in Cryogenic Liquid Hydrogen Tank with Heat Pipe 
and Array of Pump-Nozzle Units 

4.1 Problem Description 

This chapter presents a steady-state analysis for fluid flow and heat transfer in a 

ZBO cryogenic storage tank for liquid hydrogen equipped with a heat pipe and a polar 

array of pump-nozzle units. The schematic of the storage system is shown in Figure 4.1. 

The storage tank has a cylindrical body with oblate spheroidal top and bottom. The tank 

wall is made of aluminum covered by a multi-layered blanket of cryogenic insulation. 

The tank is connected to a cryocooler via a heat pipe to dissipate the heat leak through the 

insulation and the tank wall into the fluid within the tank. The condenser section of the 

heat pipe dissipates heat to the cryocooler while the evaporator section of the heat pipe 

picks up heat from the fluid. Heated fluid is directed onto the evaporator section at the tip 

of the heat pipe by a polar array of many pump-nozzle units circumferentially distributed 

around as shown in Figure 4.2a. Only the liquid hydrogen within the tank is modeled for 

computation. The surface of the evaporator section is kept at a constant low temperature 

while the surface of the condenser section is thermally insulated. The symmetry of the 

domain suggests the use of an axisymmetric model rather than a full 3-D one in order to 

reduce computing resources required while it still produces adequate results. Figure 4.2b 

shows the axisymmetric model with the axis of symmetry or the centerline of the tank 

coincides with the z-axis along which the heat pipe located. 
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Figure 4.1 Schematic of cryogenic storage system with polar array of pump-nozzle units 

 
 

 
(a) Three-dimensional arrangement (b) Axisymmetric model and dimensions  

Figure 4.2 Three-dimensional domain and simplified axisymmetric model 
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The essential geometric dimensions are denoted in general form as capital letters. 

The fixed dimensions used in this study are given in Table 4.1. 

Table 4.1 Numerical values of fixed dimensions in Figure 4.2b 

Dimension A B C D E F L M N R 

Value, m 1.50 0.65 1.30 0.20 0.30 0.20 0.30 0.10 0.10 0.10 

 

Seven geometry settings are considered to investigate the effects of several design 

parameters including G (the spraying gap between the nozzle surface and the heat pipe), 

H (the length of the heat pipe), and P (the length of the inlet tube). Each parameter has a 

set of assigned values: base, low and high. The base geometry setting is composed by 

using the base values for all three geometric parameters. Six other geometry settings are 

built by taking the base setting then changing only one geometric parameter to its low or 

high value from its base value. For each geometry setting, five values of prescribed fluid 

speed at nozzle are considered. Details on the simulation cases are given in Table 4.2. 

Table 4.2 Simulation cases for storage tank with heat pipe and array of pump-nozzle units 

Case # G, m H, m P, m Speed at nozzle V, m/s Notes 

1–5 0.2 1.5 0.55 0.01, 0.02, 0.03, 0.04, 0.05 Base G, H, P values

6–10 0.1 " " " Low G value 

11–15 0.3 " " " High G value 

16–20 0.2 1.0 " " Low H value 

21–25 " 2.0 " " High H value 

26–30 " 1.5 0.25 " Low P value 

31–35 " " 0.85 " High P value 
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The heat leak into the fluid is represented as a heat flux of qwall = 1 W/m² 

uniformly distributed over the entire surface of the tank wall. The temperature on the 

surface of the evaporator section of the heat pipe is Tcool = 20 K. The values for the 

normal speed at the nozzle face V are given in Table 4.2. The numerical values of the 

fluid properties were taken as constants at a reference temperature of 20.3 K as follows: ρ 

= 70.8 kg/m³, μ = 13.2×10-6 Pa.s, cp = 9.66×10³ J.kg⎯¹.K⎯¹, k = 0.0989 W.m⎯¹.K⎯¹.  

4.2 Computational Model 

4.2.1 Governing Equations 

The Reynolds decompositions approach with a mixing length turbulence model is 

used for modeling the fluid flow and heat transfer. The governing equations representing 

the conservation of mass, momentum, and energy for steady state flow of liquid hydrogen 

in the tank as an incompressible fluid of constant properties in microgravity condition can 

be written for the axisymmetric model as: 
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4.2.2 Boundary Conditions 

To completely define the problem, appropriate boundary conditions are required 

on the boundary of the computational domain. The boundary conditions on velocity are 
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 On nozzle face: 0, =−= zr uVu   (4.5) 

 On centerline: 0,0 =
∂

∂
=

r
uu z

r  (4.6) 

 On all solid-fluid interfaces: 0== zr uu  (4.7) 

The boundary conditions on temperature are 

 On tank wall: wallq
n
Tk =

∂
∂  (4.8) 

 On evaporator section: coolTT =  (4.9) 

 On other boundary surface: 0=
∂
∂

n
T  (4.10) 

4.2.3 Numerical Solution 

The FI-GEN module of FIDAP was used for the geometric modeling and mesh 

generation for the computational domain. A quadrilateral-element mesh of about 18000 

elements as shown in Figure 4.3 was generated for each geometry configuration (Table 

4.2) to achieve an acceptable accuracy with reasonable computing resources consumed. 

Larger size elements were used to fill most part of the domain while regular and properly 

refined element layers was assigned around inlet, outlet, and solid surfaces to capture the 

high rates of change of momentum and heat transfer existing there. 

The FISOLV module of FIDAP was set up to solve the set of nonlinear algebraic 

equations resulted from the application of the Galerkin finite-element procedure to the set 

of governing equations and boundary conditions, Equations (4.1) through (4.10), on the 

computational domain using the fully coupled successive substitution algorithm with a 

tolerance of 0.000001 for both the relative error and residual convergence criteria. 
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Figure 4.3 Quadrilateral-element mesh for axisymmetric model of storage tank with heat pipe and polar 

array of pump-nozzle units 
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4.2.4 Dimensionless Parameters 

For better consideration in general context, it is more efficient to present the 

relevant parameters and results in dimensionless form. The forced flow speed at nozzle 

can be represented by the Reynolds number at nozzle surface defined as: 

  
μ

ρ hVd
=Re  (4.11) 

where the chosen characteristic dimension is the hydraulic diameter dh of nozzle 

outlet opening, which is modeled in the axisymmetric model as a cylinder surface with 

radius of (G+D/2) and height of F (Figure 4.2b). The hydraulic diameter is defined as 

"four times flow area divided by wetted perimeter" in textbooks such as White (1991) 

and can be found as: 

  F2=hd  (4.12) 

The geometric parameters are presented in dimensionless form as: 

  dG*G =  (4.13) 

  dH*H =  (4.14) 

  dP*P =  (4.15) 

where the characteristic dimension d of the tank is chosen as the radial distance 

from the surface of the evaporator section of the heat pipe to the tank wall and can be 

found as: 

  2DA−=d  (4.16) 

The arc length coordinate is introduced for analyzing the local heat transfer on the 

tank wall. It is measured along the generatrix of the surface of revolution that forms the 

tank wall from the center of the bottom. The total length of the generatrix is calculated as 
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S = 4.7 m. Similar to the geometric design parameters, the arc length coordinate is scaled 

to the characteristic length A (rather than the generatrix length S which may seem to be a 

more natural choice, to keep it consistent with the other parameters) as: 

  dss =*  (4.17) 

Fluid speed and temperature can be presented in dimensionless form as: 

  
V
UU =*  (4.18) 

  ( )
dq

kTTT
wall

cool* −
=  (4.19) 

Using the numerical values used in this study, Equation (3.12) gives dh = 0.4 m 

and Equation (3.16) gives d = 1.4 m. Thus for the range of speed at nozzle given in Table 

1, Equation (3.11) gives Re = 2.15×104 – 1.08×105. From Table 4.2 and Equations (3.13) 

through (3.15), the dimensionless geometric parameters can have the respective values as 

follows: G* = 0.07, 0.14, and 0.21, H* = 0.7, 1.1, and 1.4; P* = 0.2, 0.4, and 0.6. The 

base geometry setting (simulation cases 1–5) has G* = 0.14, H* = 1.1, and P* = 0.4. For 

characterizing convective heat transfer, a heat transfer coefficient is defined as: 

  
coolwall

wall
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−
=  (4.20) 

From Equations (19) and (20), Nusselt number can be written as: 
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wallcoolwall
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The average Nusselt number can be found as: 

  ( )
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Nu1Nu  (4.22) 
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4.3 Results and Discussion 

Figure 4.4 presents the distribution of velocity, pressure, turbulent viscosity, and 

temperature in the fluid for the base case with speed at nozzle V = 0.01 m/s (simulation 

1). In Figure 4.4a, the filled background color represents the magnitude (speed) and the 

streamlines represent the direction of velocity that show a complete view of the velocity 

field. Figure 4.4b shows the pressure distribution in the fluid flow also for simulation 

case 1. The fluid flow pattern can be observed on these two plots. The pump creates a 

pressure difference that drives the heated fluid inside the tank toward the opening of the 

inlet tube of the pump. After being discharged from the nozzle, the flow spreads into two 

streams spraying on the evaporator section of the heat pipe. One stream goes up along the 

surface of the heat pipe brushing through the evaporator section then the adiabatic section 

of the heat pipe, until it reaches the top of the tank, sweeps along the surface of the top 

shell of the tank before being collected at the inlet opening, making the first loop. The 

other stream moves down along the surface of the evaporator section of the heat pipe, 

then the centerline, until it reaches the bottom of the tank, sweeps along the wall of the 

tank over a longer distance before going to the inlet opening again, making the second 

loop. For both streams, the speed increases to maximum value as the streams sweeping 

along the heat pipe and the centerline. The region of fluid inside these two loops, even 

though not directly driven by the pump, move under the influence of the loops and create 

two families of circulations that cover the upper part and the lower part of the tank. A 

small region exists at the wall between these two parts where no flow sweeps through 

thus remains still. 
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(a) Streamlines and speed, m/s (b) Pressure, Pa 
 

  
 (c) Temperature, K  

Figure 4.4 Distribution of velocity, pressure, and temperature, simulation case 1 
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The temperature distribution in the fluid is shown in Figure 4.4c. Temperature 

distributes quite uniformly over the entire domain. Figure 4.4c presents the temperature 

distribution over a small range of values to reveal its pattern. It can be observed that a 

lower temperature exists only in a narrow region right next to the heat pipe and along the 

centerline. The rest of the domain is at a relatively higher temperature. The temperature 

pattern shows that convective heat transfer generally dominates the entire fluid domain. 

The highest temperature concentrates along the tank wall, especially in the region of still 

fluid between the two families of circulations as mentioned above. There is also a small 

hot spot where the heat pipe is attached to the tank wall. These high temperature regions 

coincide with the regions of still fluid where the forced flow cannot reach. 

Figure 4.5 shows the change of distribution of fluid speed inside the tank for 

different values of speed at nozzle and the spraying gap G between the nozzle and the 

heat pipe. As Reynolds number increases from 2.15×104 to 1.08×105 (speed at nozzle 

increases from 0.01 to 0.05 m/s), dimensionless average speed and respective standard 

deviation remain constants. This shows that both true average speed and standard 

deviation increase linearly. As the gap G between the nozzle and the heat pipe increases, 

the average speed and the standard deviation increases also. This trend can be readily 

expected since the increase of the gap results in the increase of the area of the nozzle 

surface (modeled as a cylinder surface of radius G + D/2 and height F, see Figure 4.2b for 

dimensions), hence the increase of pumping flow rate at the same speed at nozzle. 

To assess thermal performance of a system the three parameters, maximum 

temperature, average temperature, and standard deviation of temperature distribution, are 

considered. Maximum temperature represents anti-boiling effectiveness of the system in 
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the sense that a lower maximum temperature gives a larger margin to the boiling point 

and thus can prevent boiling off better. Average temperature represents cooling 

effectiveness on the entire bulk fluid as a whole. Lower the average temperature 

characterizes better cooling system. The standard deviation of temperature represents the 

mixing effectiveness of the system. Lower standard deviation means higher uniformity in 

the bulk fluid and less chance for a spot of higher temperature to exist where boiling off 

could have occurred. 

Figure 4.6 shows the effects of Reynolds number (representing speed at nozzle V) 

and the spraying gap G between the nozzle face and the heat pipe (represented by G*) on 

thermal performance of the system. As Reynolds number increases, the three thermal 

performance parameters monotonically decrease in a nonlinear manner with decreasing 

rates of change. This confirms that the increase of Reynolds number will improve thermal 

performance of the system. 

It can be observed in Figure 4.6 that for each case of G, the curves of 

dimensionless maximum and average temperatures appear in pair of similar forms with 

an offset of about 0.02. The curves of dimensionless standard deviation for three cases of 

G appear in a group and refer to the second axis on the right of the graph that shows the 

values of these standard deviations are less than 0.1. As G increases, thus pumping flow 

rate increases as mentioned previously, all three parameters increases and show a 

worsening of thermal performance. This observation suggests that higher pumping flow 

rate will not necessarily ensure a better thermal performance but higher speed at nozzle V 

(increasing pumping flow rate) and lower spraying gap between the nozzle surface and 

the heat pipe G (decreasing pumping flow rate) will do. 
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Figure 4.5 Effect of speed at nozzle and spraying gap on speed distribution 
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Figure 4.6 Effect of speed at nozzle and spraying gap on temperature distribution 
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On analyzing the velocity distribution for the case of G* = 0.07 (G = 0.1 m, 

simulation case 6), it is found that the pattern is similar to that for the base case with G* = 

0.14 (G = 0.2 m, simulation case 1). However, the maximum speed of the case G* = 0.07 

is about 1.5 times higher than that of the base case with G* = 0.14 while the average 

speed of the former is still less than that of the latter as shown in Figure 4.5 and discussed 

above. In other words, the decrease of the spraying gap G leads to the decrease of total 

flow rate delivering to the heat pipe, thus the average speed, but also increases fluid 

speed in a local region located over the surface the heat pipe. This locally strengthened 

flow is significant for the enhancement of convective heat transfer over the surface of the 

evaporator section. This explains the previous observation that smaller spraying gap G 

results in better thermal performance of the system. 

Figure 4.7 present the effects of the length of the heat pipe H on average speed 

and maximum temperature for five different cases of Reynolds number (speed at nozzle 

V). The data were extracted from simulation cases 1–5 and 16–25 where G and P were 

assigned their base values (see Table 4.2). 

In Figure 4.7a, it can be observed that for all cases of Reynolds number, the 

dimensionless average speed show the same pattern, in a very small variation of less than 

0.005, as H* increases that the highest average speed can be found corresponding to the 

base value (1.1) of H* 

Figure 4.7b shows the effects of H* on maximum temperature. It can be observed 

that H* has almost no effect for higher Reynolds number but slightly stronger effect for 

lower Reynolds number where maximum temperature decreases as H* increases from 0.7 

to 1.4. 
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Figure 4.7 Effect of length of heat pipe on average speed and maximum temperature 



www.manaraa.com

 69

Figure 4.8 shows the effects of the length of the inlet tube P of the pump-nozzle 

unit (represented by its dimensionless form P*) on average speed and maximum 

temperature for five different cases of Reynolds number (representing speed at nozzle V). 

The data were extracted from the simulation cases 1–5 and 26–35 where G and H were 

assigned their base values (Table 4.2). 

In Figure 4.8a, as P* increases, the dimensionless average speed decreases and 

shows the same pattern for all cases of Reynolds number in less than 0.01 variation. 

Figure 4.8b shows that the dimensionless maximum temperature decrease slightly as P* 

increases from 0.2 to 0.6 for all Reynolds number. 

Instead of directly analyzing representative temperature parameters (maximum 

and average values and standard deviation) as shown previously, thermal performance of 

the system can be assessed by using a heat transfer model where the fluid is considered as 

a medium that the heat flux going in through the tank wall is transported to the surface of 

the evaporator section of the heat pipe by means of diffusive and convective heat transfer. 

Figure 4.9 presents the wall temperature and Nusselt number as functions of the 

arc length coordinate. In Figure 4.9a, it can be observed that all the curves corresponding 

to five different Reynolds numbers (representing five speeds at nozzle V) have the same 

pattern. Dimensionless wall temperature distributes quite uniformly on most parts of the 

tank except for the hot region in the middle of the cylindrical shell of the tank wall and 

the small hot spot at the end of the arc length where the heat pipe is attached to the tank 

wall. Overall dimensionless variation is less than 0.01. As Reynolds number (speed at 

nozzle) increases, wall temperature decreases. 
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Figure 4.8 Effect of length of inlet tube on average speed and maximum temperature 
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Figure 4.9b presents Nusselt numbers for the base configuration (G = 0.2 m, H = 

1.5 m, P = 0.55 m) corresponding to five cases of speed at nozzle V (simulation cases 1–

5), represented as Reynolds number, as functions of dimensionless arc length coordinate. 

Since Nusselt number is inversely proportional to temperature difference, its profile is 

similar to that of wall temperature being flipped over. It can be observed that the lower 

the speed at nozzle, the more uniform Nusselt number is. Higher Nusselt number means 

better thermal performance the system has. As speed at nozzle increases from 0.01 to 

0.05 m/s (Re = 2.15×104−1.08×105), Nusselt number increases from 5 to 20. 

Figure 4.10 shows the dimensionless wall temperature and Nusselt number for Re 

= 2.15×104 (V = 0.01 m/s) with all cases of geometry settings. The base case has G* = 

0.14, H* = 1.1, and P* = 0.4 (G = 0.2 m, H = 1.5 m, and P = 0.55 m). The legends for 

other cases only show the parameter that is different from the base case. 

In Figure 4.10a, it can be observed that the singularity of peak temperature at the 

location where the heat pipe attached to the tank exists in all cases; most cases has the 

narrow hot region in the middle of the side of the tank wall except for the two cases, H* = 

0.7 (H = 1.0 m, low H value) and P* = 0.6 (P = 0.85 m, high P value), where the hot 

region extends toward the top of the tank; lowest wall temperature is found for the case 

G* = 0.07 (G = 0.1 m, low G value). 

Figure 4.10b shows Nusselt numbers for Re = 2.15×104 (V = 0.01 m/s) and all 

cases of geometry settings as functions of dimensionless arc length coordinate. For all 

cases, Nusselt number ranges from 4.5 to 7.5 with the maximum value (most effective 

heat transfer) belongs to the case G* = 0.07 (G = 0.1 m). 
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Figure 4.9 Wall temperature and Nusselt number, base geometry setting 



www.manaraa.com

 73

0.12

0.14

0.16

0.18

0.2

0.22

0 1 2 3 4
Dimensionless arc length coordinate

D
im

en
si

on
le

ss
 w

al
l t

em
pe

ra
tu

re

Base
G*=0.07
G*=0.21
H*=0.7
H*=1.4
P*=0.2
P*=0.6

(a) Wall temperature 
 

4

5

6

7

8

0 1 2 3 4
Dimensionless arc length coordinate

N
us

se
lt 

nu
m

be
r

Base
G*=0.07
G*=0.21
H*=0.7
H*=1.4
P*=0.2
P*=0.6

(b) Nusselt number  
Figure 4.10 Wall temperature and Nusselt number, Re = 21500 
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Figure 4.11 presents the average Nusselt numbers for all cases of geometry 

settings as functions of Reynolds number (representing speed at nozzle). The data were 

extracted from all simulations performed in this study. In general, the average Nusselt 

number ranges from 4.7 to 28.8. For each case of geometry settings, the average Nusselt 

number increases almost linearly as the Reynolds number increases. The graph of the 

case G = 0.07 (G = 0.1 m) stands alone and show far higher Nusselt number than that of 

the rest for any Reynolds number. The graphs of the other cases form a group where one 

does not show much difference from each other. This suggests that the low spraying gap 

has a much more significant effect on the average Nusselt number than other geometry 

parameters. 
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Figure 4.11 Average Nusselt number as function of Reynolds number 
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4.4 Conclusions 

The numerical simulations give better understanding of the fluid flow and heat 

transfer phenomena needed for the design of a cryogenic storage tank for liquid hydrogen 

with heat pipe and array of pump-nozzle units. Thermal performance of the system can 

be quantified by temperature parameters that represent anti-boiling, cooling, and mixing 

effectiveness or by Nusselt number that results from a heat transfer model. Higher speed 

at nozzle created by the array of pump-nozzle units results in better thermal performance 

of the system. Among various geometry parameters, the gap between the nozzle and the 

heat pipe (the spraying gap) plays a very important role in controlling the thermal 

performance of the system. Other parameters such as the length of the heat pipe and the 

length of the inlet tube have only slight effects. 

Significantly improved thermal performance for a design can be achieved by 

reducing the spraying gap or by increasing speed at nozzle. On design point of view, 

increasing speed at nozzle means higher power consumption on the array of pump-nozzle 

units and thus should be avoided if possible. The forced flow speed at the nozzle can be 

chosen to satisfy required thermal performance based on the heat load (the heat flux 

leaking through the tank wall insulation from the surroundings). A model with designed 

geometry can be then set up and corresponding simulation can be run to verify the 

thermal performance of the design. It is shown that numerical modeling and simulation is 

a powerful tool for the process of designing and optimizing ZBO cryogenic storage 

systems. 
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Chapter 5 Three-Dimensional Analysis of Heat Transfer in Cryogenic Liquid Hydrogen 
Tank with Heat Pipe and Lateral Pump-Nozzle Unit 

5.1 Problem Description 

The overall schematic of the ZBO cryogenic system for liquid hydrogen is shown 

in Figure 5.1. The tank wall is made of aluminum attached to a multi-layered blanket of 

cryogenic insulation on its top. The tank is connected to a cryocooler via a heat pipe to 

dissipate the heat leak through the insulation and tank wall into the fluid within the tank. 

The condenser section of the heat pipe dissipates heat to the cryocooler while the 

evaporator section of the heat pipe picks up heat from the fluid within the tank. The hot 

fluid is directed to the evaporator section of the heat pipe by using a fluid circulatory 

system within the tank. This system consists of a pump, a nozzle head for discharge of 

fluid and a suction tube feeding to the pump. Only the fluid inside the tank is modeled. 

Several different discharge speeds were investigated to find an optimum operating setting 

for the ZBO hydrogen storage system. Steady-state distributions of velocity and 

temperature were computed. This chapter presents a parametric analysis for the fluid flow 

and heat transfer, focusing on the effect of the normal speed discharged at the nozzle 

face. Although it costs more computing resources, a three-dimensional (3-D) model as 

shown in Figure 5.2 is employed since the axisymmetric one is now no longer the case. In 

addition, axisymmetric simulations (see Chapter 4 for details) with the same parameters 

as their 3-D counterparts were also computed for relative comparison. 
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Figure 5.1 Schematic of cryogenic storage system with single lateral pump-nozzle unit 
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Figure 5.2 Computational model and dimensions 
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In Figure 5.2b, the essential geometric dimensions are denoted in general form as 

capital letters. The values of the dimensions used in this study are given in Table 5.1. 

Table 5.1 Numerical values of fixed dimensions in Figure 5.2b 

Dimension A B C D E F G H L M N P R 

Value, m 1.50 0.65 1.30 0.20 0.30 0.20 0.20 1.50 0.30 0.10 0.10 0.80 0.10

 

The heat leak into the fluid from the surroundings is considered as a heat flux of 

qwall = 2 W/m² uniformly distributed over the entire surface of the tank wall. The heat 

generated by the running pump is modeled at a heat flux of qpump = 0.01 W/m² uniformly 

distributed over the wall of the pump body. The temperature on the surface of the 

evaporator section of the heat pipe is Tcool = 18 K. The values for the normal speed at the 

nozzle face V are given in Table 5.2. The numerical values of the fluid properties were 

taken as constants at a reference temperature of 20.3 K as follows: ρ = 70.8 kg/m³, μ = 

13.2×10-6 Pa.s, cp = 9.66×10³ J.kg⎯¹.K⎯¹, k = 0.0989 W.m⎯¹.K⎯¹. 

Table 5.2 Simulation cases for storage tank with heat pipe and lateral pump-nozzle unit 

Model 3-D Axisymmetric 

Case # 1 2 3 4 5 6 7 8 9 10 

Fluid speed at nozzle V, m/s 0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

 

5.2 Computational Model 

5.2.1 Governing Equations 

The Reynolds decompositions approach with a mixing length turbulence model is 

used for modeling the fluid flow and heat transfer. Steady state, incompressible flow of 
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liquid hydrogen is considered. The equation for the conservation of mass, momentum, 

and energy can be written for the 3-D model in rectangular coordinates as: 
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5.2.2 Boundary Conditions 

The boundary conditions on velocity and on temperature are 

 On nozzle face: 0, === zyx uuVu  (5.6) 

 On plane of symmetry: 0,0 =
∂
∂

=
∂
∂

=
y
u

y
uu zx

y  (5.7) 

 On fluid-solid interfaces: 0=== zyx uuu  (5.8) 

 On evaporator section: coolTT =  (5.9) 

 On tank wall: wallq
n
Tk =

∂
∂  (5.10) 

 On pump wall: pumpq
n
Tk =

∂
∂  (5.11) 

 On other boundary surfaces: 0=
∂
∂

n
T  (5.12) 
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5.2.3 Numerical Solution 

For solving the governing equations numerically by using finite element method, 

the computational domain needs to be discretized into small elements. For a 3-D domain 

of irregular shape as this is, it is easier to generate a mesh of tetrahedral elements (most 

meshing program has the option to generate the mesh automatically) but the number of 

elements will be very large, yielding to more computing resources required sometimes 

may exceed available resources or become impractical. The hexahedral-element mesh for 

a complex geometry, on the other hand, usually takes longer to generate due to the lack of 

an existing fully automatic meshing option, but can reduce the number of elements, thus 

can reduce computing resources required, significantly. For this study, the geometry and 

mesh generation software GAMBIT (Fluent, 2006) was used with a systematic meshing 

strategy to generate a fully hexahedral mesh for the 3-D model. The irregular geometries 

are encapsulated in box shapes, leaving the main space as a combination of box shapes 

that can be meshed automatically with cuboid elements. The encapsulated geometries are 

meshed separately to accommodate the irregular geometries while maintaining the mesh 

on the outer of the zone match that of the main space. The final mesh of about 39000 

hexahedral elements as shown in Figure 5.3 to achieve acceptable accuracy with 

reasonable computing resources employed. Figure 5.3c shows the expanded view 

focusing on the region around the heat pipe tip and the pump-nozzle unit where highly 

irregular geometry is located. Larger size regular elements were used to fill most part of 

the domain while properly refined element layers was assigned around inlet, outlet, and 

solid surfaces to capture the high rates of change of momentum and heat transfer that 

exist there. 
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(a) Full view (b) Heat pipe and pump-nozzle unit 
 

(c) Expanded view of pump-nozzle unit and evaporator section of heat pipe  
Figure 5.3 Hexahedral-element mesh for 3-D model of storage tank with heat pipe and lateral pump-

nozzle unit 
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Since fully coupled algorithms are not practically applicable due to large number 

of elements in a 3-D computational domain of highly irregular geometry, the segregated 

algorithm was used to solve this system of finite element equations. The convergence 

criterion of relative errors was used with the tolerance set at 0.0001. 

5.3 Results and Discussion 

Figure 5.4 shows the velocity field of the flow of liquid hydrogen inside the tank 

for the base case (simulation case 1). For revealing the complex structure of the 3-D fluid 

flow, three subplots are employed for streamlines, speed distribution, and velocity vector-

speed distribution combined. Figure 5.4a presents nine color-coded streamlines that starts 

from a three by three regular spaced positions on the nozzle face and represents the 

typical flow pattern. The pump creates a pressure difference that draws the fluid inside 

the tank towards the inlet of the suction tube. The fluid enters the suction tube of the 

pump and moves towards the nozzle. In the nozzle, the flow expands, thus reduces speed, 

and then exits through many tiny holes on the nozzle face. After being discharged from 

the nozzle, the fluid flow spreads into many streams wrapping around the evaporator 

section of the heat pipe, which is maintained at a low constant temperature of 18 K. We 

can roughly classify three groups of streams moving in three main directions. The first 

group sweeps along the cylindrical part of the evaporator section of the heat pipe, then 

the heat pipe adiabatic section, until it reaches the top, sweeps along a short portion on 

the top before being collected again at the suction tube inlet. The second group moves 

down along the tip of the heat pipe, wraps around the spherical part of the heat pipe then 

moves towards the bottom and creates a strong circulation in the region on the left below 

the heat pipe. The third group of streams is the main part which wraps around the side of 
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the cylindrical part of the heat pipe towards the open space on the left side of the heat 

pipe. In the absence of any obstacle, this group of streams reaches the wall of the tank 

and sweeps through most of the middle and upper part of the tank wall before returning to 

the pump side and being collected at the suction tube inlet. Figure 5.4b presents the flow 

speed isosurfaces (surface that represents points of a constant value of speed) with the 

color representing the speed level. At the nozzle face, the fluid speed is 0.01 m/s as 

assigned by its boundary condition. At the inlet of the suction tube, the fluid speed is 

about 0.04–0.05 m/s which is consistent with the estimated average speed of 0.04 m/s 

there, based on cross-sectional area ratio and continuity condition. The fluid speed around 

the evaporator section of the heat pipe is about 50–60% of the discharge speed at the 

nozzle face. Figure 5.4c presents a close-up view of velocity field in the region 

surrounding the nozzle and the evaporator section of the heat pipe. The arrows represent 

the velocity vectors on a color-coded background that represents speed distribution. Only 

quarters of the fluid volume and the heat pipe are viewed to show the velocity field on 

both the direct impinged zone and the side of the heat pipe. It shows more clearly the 

speed distribution and how the flow wrapping around the heat pipe there. 

Figure 5.5 shows the temperature distribution inside the tank for the base case 

(simulation case 1). For the problem at hand in which the fluid is heated up by heat flux 

applied on the tank wall, temperature on the wall is always higher than that of the fluid 

inside. The pattern of temperature on the tank wall and how it changes inward the bulk 

fluid is of interest. For revealing the complex structure of the 3-D distribution of 

temperature, four subplots are employed. Figure 5.5a presents a slice plot with the slice 

surface that conforms to and 5 cm from the tank wall. The first group of streams does not 
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show much a significant effect except for a small spot of high temperature right above the 

inlet of the suction tube which can be explained as follows: as the fluid is being collected 

at the inlet of the suction tube, the flows would sweep through the wall nearby but since 

they bend towards the inlet, there is no flow sweeping through that area and it behaves 

like a stagnant region. The second group of streams moves down to the left cools down a 

part of the bottom but the circulation is confined in a small region preventing the cool 

fluid to spread further to the right, leaving the part of the tank wall on the right of the heat 

pipe at higher temperature. A part of the fluid close to the tank wall on the left side (the 

opposite side to the pump-nozzle unit) is kept at a lower temperature since the third group 

of fluid streams splash and spread on it with an incoming flow cooled on the evaporator 

section of the heat pipe. This part extends up to half of the tank wall on the left side. As 

the second and third groups of streams leave the lower part on the right side almost 

undisturbed, this region shows the pattern of diffusive heat transfer, confirming the 

absence of any strong fluid stream and thus convective heat transfer in this region; an 

area of high temperature exists there as the result. 

Figure 5.5b presents the isosurfaces for temperature showing how the high 

temperature regions extend into the bulk fluid. The innermost isosurface is for 18.1 K has 

several peaks that locate the higher temperature regions beneath them. Beside the two hot 

areas observed in Figure 5.5a, there is another one at the middle side of the tank. 

Parts (c) and (d) of Figure 5.5 present the views from front and back of the slice 

plot with slice surfaces are planes perpendicular to the axis of the tank. They show how 

the hot regions extend into the bulk fluid. The hot region on the bottom of the tank is the 

most extended one, both spreading on the wall and into the bulk fluid. 
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(a) Streamlines (b) Speed, m/s 
 

(c) Velocity vector and speed, m/s  
Figure 5.4 Velocity distribution, m/s, simulation case 1 
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(a) Conformal slice plot (b) Isosurfaces 
 

(c) Axial planar slice plot, front (d) Axial planar slice plot, back  
Figure 5.5 Temperature distribution, K, simulation case 1 

 
 
 
 
 
 
 



www.manaraa.com

 87

Figure 5.6 presents a comparison of the temperature distribution pattern on the 

symmetry plane for simulation case 1, Figure 5.6a, as the typical case for 3-D 

simulations, and simulation case 6, Figure 5.6b, as the typical case for axisymmetric 

simulations. Figure 5.6b was created by putting together a temperature distribution plot of 

simulation case 6 with its mirror image. Boundary conditions and dimensions are also the 

same for the two models. Both simulations have the fluid speed at the nozzle face of V = 

0.01 m/s. However, the flow rates at the nozzle face are different due to different total 

nozzle face area (for the axisymmetric model, the actual nozzle face is a cylindrical 

surface which has the area of 12 times of the area of the nozzle face of the 3-D model, a 

flat circle). Also note that Figure 5.6a only shows temperature distribution on the 

symmetry plane of the 3-D model whereas the plot in Figure 5.6b can be of any cross-

section through the axis of the tank. In Figure 5.6a, heat diffusion dominates in the region 

on the right and under the pump-nozzle unit with a clear temperature gradient from the 

tank wall whereas the rest has lower temperature due to convection heat transfer as 

discussed previously. In Figure 5.6b, the temperature distribution for the axisymmetric 

model is totally different. Temperature is distributed more uniformly since the larger flow 

rate from the nozzle yields better mixing over the entire region. Due to the axi-symmetry 

of the model, the fluid flow discharged from the nozzle face after impinging on the 

evaporator section of the heat pipe can only flow in two directions: going up along the 

heat pipe up to the top of the tank or going down along the axis of the tank in an 

axisymmetric manner (annular flow wrapping around the heat pipe). Low temperature 

fluid is confined in a small region next to the heat pipe, especially the portion right under 

the spherical tip. Overall temperature is higher than that for the 3-D model. Average 
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speed, taken over the entire computational domain, can be used as a parameter for 

assessing the mixing effectiveness, which plays a role in leveling the temperature 

difference in the fluid. Figure 5.7 shows how the fluid speed at nozzle face affects the 

mixing effectiveness. As the speed at nozzle increases, the average speed also increases 

linearly for both 3-D and axisymmetric models. The rate of increasing average speed for 

the axisymmetric model is much higher than that for the 3-D model (about 4–5 times), 

meaning that the axisymmetric model has better performance in mixing effectiveness. 

The value of average speed for axisymmetric model (ranging in about 0.002–0.012 m/s) 

is always higher than that for 3-D model (ranging in about 0.001–0.003 m/s) as expected 

because of higher flow rate from the nozzle as discussed above. 

The leveling of temperature difference itself can be assessed by observing the 

maximum-to-average temperature difference, which is convenient for comparison 

between models (e.g. 3-D model vs. axisymmetric model) despite different temperature 

ranges. Figure 5.8 shows the dependency of the maximum-average temperature 

difference on the fluid speed at the nozzle face. As the speed at the nozzle increases, the 

temperature difference decreases for both models with much higher drop rate (about 4–8 

times) for 3-D model (from 1.4 K to 0.6 K) compared to that for the axisymmetric model 

(from 0.4 K to 0.3 K). This means that the 3-D model is more sensitive to the increasing 

of the speed at nozzle but the lower values of temperature difference confirms that the 

axisymmetric model gives better mixing effectiveness.  

For a ZBO system, the maximum temperature is the most important parameter 

indicating if evaporation can happen, or ZBO effectiveness. Figure 5.9 shows the 

maximum temperature as a function of fluid speed at the nozzle for both models. 
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(a) 3-D model, simulation case 1 (b) Axisymmetric model, simulation case 6  
Figure 5.6 Comparison of temperature distribution on symmetric plane, K 
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Figure 5.7 Effect of fluid speed at nozzle face on average speed 
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Figure 5.8 Effect of fluid speed at nozzle face on maximum-average temperature difference 
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Figure 5.9 Effect of fluid speed at nozzle face on maximum temperature 
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As the speed at nozzle increases, the maximum temperature decreases nonlinearly 

but monotonously. This yields an important conclusion that increasing the fluid speed 

discharged at the nozzle face improves the ZBO effectiveness. From a theoretical point of 

view, the problem under study can be approximated by the problem of heat transfer for 

constant free-stream velocity and surface temperature, a simpler yet well studied problem 

whose solution and discussion can be found in the textbook by Kays et al. (2005) with a 

result that the Nusselt number (representing the heat transfer coefficient) is proportional 

to a positive power of the Reynolds number (representing the free-stream velocity). This 

means that as the forced velocity from the nozzle increases, the heat transfer coefficient 

on the surface of the evaporator section of the heat pipe increases and the flow transports 

the heat leak through the tank wall to the heat pipe by forced convection more effectively, 

thus the temperature rise in the fluid decreases. 

The maximum temperature in the 3-D model is found much lower than that in the 

axisymmetric model, meaning that it has better performance in ZBO effectiveness. This 

is an interesting observation: the use of one pump-nozzle unit (3-D model) gives better 

ZBO effectiveness than the use of “infinite” number of pump-nozzle units (axisymmetric 

model). One of the possible reasons is that many pump-nozzle units in the axisymmetric 

model give off more heat than a single unit in the 3-D model, thus the higher maximum 

temperature for the former. However, the heat generated by the pump motor(s) may not 

produce that much effect. The reason for that may very likely be due to the limitations of 

the axisymmetric model itself. For an actual design of multi pump-nozzle units, there are 

always gaps between the units that may allow complex 3-D fluid flows and induce more 

mixing in the fluid, increase convective heat transfer, and thus reduce temperature. 
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5.4 Conclusions 

The numerical simulations give better understanding of the fluid flow and heat 

transfer phenomena in more realistic 3-D space needed for the design of a cryogenic 

storage tank for liquid hydrogen. Most parts of the forced flow from the nozzle, wrapping 

around the evaporator section and being cooled down there, can easily reach the opposite 

tank wall and carried the penetrating heat away by convection over a large area of the 

tank wall before being recollected at the suction opening. The minor part of the incoming 

flow impinging on the evaporator section and returning to the suction opening is the most 

ineffective one, since it has hardly touched the tank wall where the heat is penetrating. 

The collective outcome of this flow pattern results in better cooling performance. 

There are three hot regions extended inward from the interface of the fluid with 

the tank wall. From top to bottom and also to the increase of size, the first one is 

projected above the opening of the suction tube; the second one is at middle of the 

cylindrical shell of the tank, by the side of the pump; and the third one is at the bottom of 

the tank, about 45 degree to the back of the pump. They are connected by a large but thin 

high temperature area that covers the part of the tank wall on the back of the pump. These 

locations are important to the design of the storage system, e.g. suggesting the use of 

additional equipment for local treatments to eliminate the hot regions in order to increase 

ZBO effectiveness, or locating where to put thermal detectors for a control system to 

prevent the maximum temperature to exceed a preset threshold. 

In comparison to the 3-D model, the solution on the axisymmetric model gives a 

distribution of higher temperature over the entire domain. It is found that the use of a 

single pump-nozzle unit in the tank, as simulated in the 3-D model, results in better ZBO 
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performance than the use of an array of many (infinite) pump-nozzle units, as simulated 

in the axisymmetric model. This happens because the fluid in a real 3-D flow can move 

in all directions and through the gaps between pump-nozzle units to connect different 

parts of the tank whereas the nature of the axisymmetric model is to separate the fluid 

into regions blocked by solid walls. The minor part of flow impinging on the heat pipe 

then return without sweeping the tank wall, which is the most ineffective-at-cooling one 

in 3-D model is the major part in the axisymmetric model, resulting in higher temperature 

overall and thus less ZBO effectiveness for the axisymmetric model. 

The results from the simulations for both models show that the increasing of the 

fluid speed discharged at the nozzle face improves both mixing effectiveness and anti-

boiling-off effectiveness. The numerical modeling and simulation can be satisfactorily 

used in the design of these systems to obtain good predictions over a wide range of 

design alternatives and operating conditions. 
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Chapter 6 Transient Analysis of Heat Transfer in Cryogenic Liquid Hydrogen Tank with 
Heat Pipe and Axial Pump-Nozzle Unit 

6.1 Problem Description 

This study considers a cylindrical tank with spheroidal top and bottom as shown 

in Figure 6.1. The tank wall is made of aluminum covered by a multi-layered blanket of 

cryogenic insulation. The tank is connected to a cryocooler via a heat pipe to dissipate the 

heat leak through the insulation and the tank wall into the fluid within the tank. The 

condenser section of the heat pipe dissipates heat to the cryocooler while the evaporator 

section picks up heat from the fluid within the tank. The hot fluid is directed onto the 

evaporator section of the heat pipe by a fluid circulation system within the tank. This 

system consists of a pump, a spray head for discharge of fluid and a collector tube 

feeding to the pump. Normally, the pump does not work until the maximum temperature 

inside the tank reaches a threshold, which is the boiling temperature of liquid hydrogen 

under the working pressure of the tank. When the fluid reaches the temperature threshold, 

the pump starts running and the nozzle discharges the heated fluid onto the cold surface 

of the evaporator section thus cool the fluid off. After a certain period of time, it shuts off 

and stands by until the fluid reaches the threshold again. Only the fluid inside the tank is 

modeled for computation. The symmetry of the computational domain suggests the use of 

an axisymmetric model which consumes less computing resources compared to that for 

the original three-dimensional problem. An axisymmetric model of the fluid inside the 

storage tank is presented in Figure 6.2. The essential dimensions are denoted in general 
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form as capital letters with the values assigned for this study given in Table 6.1. The axis 

of the tank is shown as the centerline coincident with the z-axis. The cylindrical wall and 

the ellipsoidal top and bottom are shown as a straight line and two elliptic arcs. The heat 

pipe is located along the centerline and has the evaporator and condenser sections. 

Table 6.1 Numerical values of fixed dimensions in Figure 6.2b 

Dimension A B C D E F G H L M N P R 

Value, m 1.50 0.65 1.30 0.10 0.30 0.10 0.20 1.50 0.30 0.10 0.05 0.30 0.10

 

The constant fluid properties were taken at a reference temperature of 20.3 K as: 

ρ = 70 kg/m³, μ = 12×10⎯6 Pa.s, cp = 10 kJ.kg⎯¹.K⎯¹, k = 0.1 W.m⎯¹.K⎯¹. The heat leak into 

the fluid is represented as a heat flux of qwall = 1 W/m² uniformly distributed over the 

tank wall. The temperature on the surface of the evaporator section of the heat pipe is 

Tcool = 20 K. The normal speed at the nozzle face is a function of temperature as: 

  
⎩
⎨
⎧ =

=
otherwise0

stophour then  1for run  K, 23)max( start whenm/s 08.0 T
V  (6.1) 

6.2 Computational Model 

6.2.1 Governing Equations 

The Reynolds decompositions approach with a mixing length turbulence model is 

used for modeling the fluid flow and heat transfer. The governing equations representing 

the conservation of mass, momentum, and energy for steady state flow of liquid hydrogen 

in the tank as an incompressible fluid of constant properties in microgravity condition can 

be written for the axisymmetric model as: 

  ( ) 01
=

∂
∂

+
∂
∂

z
uru

rr
z

r  (6.2) 



www.manaraa.com

 96

CryocoolerHeat exchanger

Controller

Solar array

Pump-nozzle 
unit

Tank wall

Insulation

Heat pipe

Liquid cryogen

Radiator

Condenser

Evaporator
Heat flux from 
surroundings

 
Figure 6.1 Schematic of cryogenic storage system with axial pump-nozzle unit 

 
 

 
(a) Three-dimensional arrangement (b) Axisymmetric model and dimensions  

Figure 6.2 Three-dimensional domain and simplified axisymmetric model 
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6.2.2 Boundary Conditions 

The boundary conditions on velocity and temperature are 

 On nozzle face: Vuu zr == ,0   (6.6) 

 On centerline: 00 =
∂
∂

=
r
uu z

r  (6.7) 

 On all solid interfaces: 0== zr uu  (6.8) 

 On tank wall: wallq
n
Tk =

∂
∂  (6.9) 

 On evaporator section: coolTT =  (6.10) 

 On other boundary surfaces: 0=
∂
∂

n
T  (6.11) 

6.2.3 Numerical Solution 

The governing equations and boundary conditions, Equations (6.2) to (6.11), were 

solved numerically as discussed in section 2.4. Figure 6.3 shows the mesh of about 10000 

quadrilateral elements for the axisymmetric model. To solve the finite element equations, 

the fully coupled successive substitution algorithm was employed with the tolerances of 

0.0001 and 0.01 for the relative error and residual convergence criteria, respectively. 
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Figure 6.3 Quadrilateral-element mesh for axisymmetric model of storage tank with heat pipe and axial 

pump nozzle unit 
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6.3 Results and Discussion 

The transient solution for this problem can be presented in several stages: 

initially, the fluid is stationary and has a uniform temperature of 20 K; stage 1: the 

stagnant fluid is heated up by heat conduction only, until the maximum temperature 

reaches 23 K; stage 2: the pump starts 1-hour run and creates a forced flow from the 

nozzle, heat transfer includes conduction and convection; stage 3: the pump stop, but 

there still fluid flow as the result of stage 2, heat transfer also includes conduction and 

convection until the entire fluid becomes still after a long enough time. Stages 2 and 3 

compose a cycle with a run-interval (stage 2) and rest-interval (stage 3). The following 

cycles are similar to the first one. 

Figure 6.4 presents the temperature distribution at the end of stage 1 (after 83 

hours) when the maximum temperature reaches 23 K. It shows the conduction pattern 

with temperature decreasing gradually from the heated surface (tank wall) toward the 

cold surface (evaporator section of the heat pipe) and separated into isothermal layers. It 

can be observed that the inside isothermal layers tend to round off at the corners of the 

tank, shared by the cylindrical shell and the spheroidal top and bottom, with more 

uniform changes of curvature, thus the geometric shape of the tank is not “thermally 

conformal” at the corners where the spots of maximum temperature are located. A sensor 

is needed to monitor the temperature there and give a signal to turn on the pump if the 

temperature exceeds a certain threshold (23 K). That finishes stage 1. 

Figure 6.5 shows the changes of maximum and mean temperatures of the fluid in 

stage 1 as functions of time. The mean temperature increases linearly while the maximum 

temperature increases at a higher rate and mostly nonlinearly during several first hours. 
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Figure 6.4 Distribution of temperature at the end of stage 1, K 
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Figure 6.5 Maximum and mean temperatures vs. elapsed time, stage 1 
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Figure 6.6 present the distributions of fluid flow and temperature at the beginning 

(5 minutes) and Figure 6.7, at the end (60 minutes) of stage 2. 

In Figure 6.6a, when the pump has just started for a few minutes, the fluid flow 

from the nozzle reaches the evaporator section, cool off the fluid along the way and flow 

along the length of the heat pipe up to the top of the tank then follows the curvature of the 

tank shell, sweeps through the top and the cylindrical shell, increases the heat transfer 

with the tank wall. The lower part of the tank is still unperturbed making it harder for the 

flow to displace the stagnant fluid there due to the lack of momentum of the flow since it 

is now far away from the nozzle. The flow is forced to separate from the wall and direct 

toward the suction tube of the pump, making a closed streamline. The fluid inside the 

streamline directly driven by the jet from the nozzle is also affected by viscous effects 

and creates a family of streamlines. As the result of such flow pattern, the temperature 

distribution shown in Figure 6.6b has a high temperature region next to the bottom and 

gradually decreases upwardly and inwardly from the lower corner of the tank. The 

location of maximum temperature moves from the lower corner toward the bottom. 

After 1 hour running of the pump, the velocity field is getting to steady state and 

has the distribution as shown in Figure 6.7a. The fluid mixing is better resulting in much 

more uniform temperature field as shown in Figure 6.7b (note that a shorter temperature 

range is used to better visualize the temperature distribution) where the high temperature 

region is pressed to the wall and remains in a thin layer. The maximum temperature spot 

is now at the middle of the bottom (on the centerline) where there is a stagnant zone since 

the fluid flow collected to the suction tube cannot reach that spot. The pump shuts down 

that ends stage 2. 
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(a) Streamlines and speed, m/s (b) Temperature, K  

Figure 6.6 Distributions of velocity and temperature, stage 2, 5 minutes 

 

 
(a) Streamlines and speed, m/s (b) Temperature, K  

Figure 6.7 Distributions of velocity and temperature, stage 2, 60 minutes 
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For quantitatively assessing the effect of fluid mixing by the pump to temperature 

distribution, Figure 6.8 shows how maximum and mean temperatures decrease over time. 

Mean temperature decreases gradually. Maximum temperature decreases slowly at first, 

then drops at a higher rate, and then slows down a bit at the end. The drop of maximum 

temperature in this stage is about 2 K in 1 hour. 
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Figure 6.8 Maximum and mean temperatures vs. elapsed time, stage 2 

 

Figure 6.9 shows the temperature distribution at the end of stage 3. The pattern is 

different than that at the end of stage 1 since there still slow circulations remains even 

though the pump has been off for some time, thus there are convective heat transfer that 

make it different than stage 1. The location of maximum temperature in this pattern is at 

the middle of the cylindrical shell of the tank wall. Temperature has to be measured at 

this location by another sensor to control the switching on operation of the pump every 

time the temperature there exceeds the threshold of 23 K. 
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Figure 6.10 presents the maximum and mean temperatures during stage 3, which 

is somehow similar to that of stage 1 although the numerical values are different. The 

mean temperature still increases linearly and the maximum temperature, nonlinearly, fast 

rate at the beginning then slows down. However, it takes only about 70 hours for the fluid 

to heat up to a maximum temperature of 23 K again (compare to 83 hours in stage 1). 

This happens because the temperature at the beginning of stage 3 is higher than that of 

stage 1 as represented by mean and maximum temperatures in Figure 6.10 and Figure 

6.5. This also implies that each of the following cycles will end at higher temperature and 

thus becomes shorter than that of the previous one. 

Figure 6.11 shows the maximum and mean temperatures over several cycles. It 

can be observed that their change follows some determined rules. In the run-interval of 1 

hour, both temperatures drop but not as much as in the previous cycle. The result is the 

rest-interval is getting shorter as the number of cycles increases. We can estimate the 

time when this type of cycle (1-hour run-interval, in rest-interval until maximum 

temperature reaches 23 K) stops working. By means of extrapolation the maximum 

temperature at the end of each run-interval, it is found that after about 337 hours (14 

days), the rest-interval will vanish, i.e. the pump has to run for a much longer time to 

reduce the maximum temperature to some reasonable level that keeps the rest-interval 

longer in the order of tens of hours. 

6.4 Conclusions 

The numerical simulations provide insightful understanding of the phenomena of 

transient fluid flow and heat transfer in an active circulation cryogenic storage system for 

liquid hydrogen. Since there are several different flow patterns corresponding to different 
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stages created by the intermittent operation of the pump, there are different temperature 

distributions that characterize each stage. As a result, the location of maximum fluid 

temperature moves from place to place: at the tank corners for the stagnant fluid during 

stage 1; at the middle of the bottom when the pump is running (stage 2); and at the 

middle of the cylindrical shell when the pump is off but there are still fluid circulations 

due to residual momentum (stage 3). These predictions are essential for the design of the 

system as locating the temperature sensors at the spots of highest temperature is required. 

These sensors will provide feedback to the control circuit for the operation of the pump 

motor. The use of many temperature sensors may complicate the system a bit but having 

all critical locations monitored ensures a safer and more effective operation of the system. 

The pump operation cycle with run-intervals of constant time and rest-intervals 

controlled by an upper threshold temperature can work only for a short time plan (less 

than 2 weeks for the specific plan considered in this study). For longer term applications, 

different pump operation schemes are needed. Based on the results found in this study, 

several modified pump operation cycles can be proposed. One potential plan is that the 

run-interval is set to increase from cycle to cycle (the lengths of time of the run-intervals 

are pre-computed by using numerical simulation) so that the pump will run long enough 

to keep the rest-interval from getting shortened. Another plan is that the run-intervals are 

controlled by a lower threshold temperature (that is, the pump is set to run until the fluid 

maximum temperature reaches a lower threshold). The maximum temperature in the run-

interval (stage 2) has been predicted to locate at the middle of the tank bottom. Another 

sensor will be needed here to detect the temperature lower threshold. Transient analyses 

for the proposed schemes are necessary to conclude their feasibility and effectivity. 
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Figure 6.9 Distribution of temperature at the end of stage 3, K 

 

20

21

22

23

0 10 20 30 40 50 60

Time, hours

Te
m

pe
ra

tu
re

, K

Maximum values
Mean values

 
Figure 6.10 Maximum and mean temperatures vs. elapsed time, stage 3 
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Figure 6.11 Maximum and mean temperature vs. elapsed time for first 3 cycles 
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Chapter 7 Analysis of Cooling Performance in Refrigerated Warehouse with Ceiling 
Type Refrigeration Units 

7.1 Problem Description 

This study considers a typical refrigerated warehouse as shown in Figure 7.1. A 

set of many cooling units (CU) is installed along the front wall, in front of the arrays of 

product packages, to provide cold air flow that maintains low temperature in the space. 

The products are stacked on pallets into many parallel arrays with wide aisles between 

one another and clearances from the walls and from the floor. Each array consists of 2 

back-to-back rows of 4 piles of 3 stacks of packages with clearances between each other, 

both horizontal and vertical, as suggested by guidelines (IIR, 1966). 

This arrangement in the warehouse possesses two parallel planes of symmetry as 

shown in Figure 7.1. The first one cuts through the middle of an array and separates its 

two rows of stacking packages. The second one cuts through the middle of an aisle 

between two arrays. The space contained between the two planes of symmetry represents 

almost the whole space inside the refrigerated warehouse (without taking into account the 

end-wall effects) by mirroring itself through the planes of symmetry to recreate the whole 

space. 

The 2-D and 3-D models for the refrigerated warehouse are shown in Figure 7.2. 

For 2-D simulations, the computational domain is modeled as a rectangular region shown 

in Figure 7.2a containing 12 product packages stacked with vertical and horizontal gaps 

between them to separate them from each other and from the floor and the back wall. In 



www.manaraa.com

 109

front of the array located a CU which blows the cooling air through its outlet on the right 

face. The relevant lengths L1 through L11 are given in Table 7.1. The values of L5–L8 

were chosen in accordance with the available guidelines (IIR, 1966; Tressler et al., 1968). 

The CU location is defined by the distance X from the front wall and the height Z from 

the floor. This 2-D model represents the space in the warehouse on a vertical plane 

cutting through the CU and the arrays of packages. For 3-D simulations, the space 

between the two planes of symmetry is modeled as a box region as shown in Figure 7.2b 

including a half of an aisle, one row of four piles of three stacks of product packages, and 

a set of a large number of CU in front of the array of packages modeled as one long CU. 

The relevant dimensions for the 3-D model are the same as the respective ones for the 2-

D model. In the y-direction that is absent from the 2-D model, the widths of a package 

and of the computational domain are 1.0 m and 2.0 m, respectively. 

Table 7.1 Numerical values of fixed dimensions in Figure 7.2a 

Dimension L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 

Value, m 7.0 4.0 1.2 0.8 0.1 0.1 0.2 0.1 0.4 0.6 0.4 

 

Several factors may affect the thermal behavior of the warehouse such as cooling 

air velocity and temperature; location of the CU, both horizontal and vertical; and product 

distribution pattern, i.e. clearances between racks, aisles, etc. This study investigates the 

effects of the blowing air velocity and the location of the CU. Simulations with 3-D and 

2-D models with base settings are run and the results are compared to justify the use of 

the 2-D model. For a parametric analysis, additional 2-D simulations with five different 

blowing velocities and eight different CU locations are then performed. 
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Figure 7.1 Basic arrangement in a refrigerated warehouse 
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(a) Two-dimensional model 
 

 
(b) Three-dimensional model  

Figure 7.2 Two- and three-dimensional models for refrigerated warehouse 
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The simulation cases are summarized in Table 7.2. For simulation cases 2–7, the 

CU is fixed at the base location whereas the blowing air velocity V varies. For simulation 

cases 8–15, the blowing air velocity V is fixed whereas the CU location varies. Pseudo-

direction codes NE, NW, SE, SW, N, S, E, and W (Figure 7.2) are used to indicate the 

location of the CU relative to the base (central) location dependent on X and Z. 

Table 7.2 Simulation cases for refrigerated warehouse 

Case # CU location X, m Z, m V, m/s Model Notes 

1 Central 1.1 3.3 0.50 3-D Base case 

2 " 1.1 3.3 0.50 2-D " 

3 " 1.1 3.3 0.25 " CU fixed, V varied 

4 " 1.1 3.3 0.30 " " 

5 " 1.1 3.3 0.40 " " 

6 " 1.1 3.3 0.75 " " 

7 " 1.1 3.3 1.00 " " 

8 NE 1.3 3.5 0.50 " V fixed, CU moved 

9 NW 0.9 3.5 0.50 " " 

10 SE 1.3 3.1 0.50 " " 

11 SW 0.9 3.1 0.50 " " 

12 N 1.1 3.5 0.50 " " 

13 S 1.1 3.1 0.50 " " 

14 E 1.3 3.3 0.50 " " 

15 W 0.9 3.3 0.50 " " 
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The applicable thermal properties for air are taken from Kays et al. (2005) at a 

reference temperature of Tref = 0°C and listed as follows: ρ = 1.293 kg/m³, μ = 17.2×10⎯6 

Pa.s, k = 24.07×10⎯³ W.m⎯¹.K⎯¹, cp = 1004 J.kg⎯¹.K⎯¹, β = 3.663×10-3 K⎯¹. Gravitational 

acceleration is taken as g = 9.8 m/s². The thermal properties for the products are adapted 

from ASHRAE (2002) as ρs = 840 kg/m³, ks = 0.52 W.m⎯¹.K⎯¹, cp,s = 3.79×103 J.kg⎯¹.K⎯¹. 

The temperature at the outlet side of the CU is fixed at a constant temperature of 

Tcool = 0°C, so chosen for the refrigerated space to achieve the range of temperature 

proper for the storage of foods such as fresh fruits and vegetables, poultry and dairy 

products, etc. as recommended in ASHRAE (2002) and Hardenburg et al. (1986). The 

linear heat transfer models whose relevant data are taken from ASHRAE (2002) are 

applied for the floor, the ceiling and the walls. where the floor is assumed to be made of 6 

in. (0.152 m) concrete un-insulated slab under ground temperature of Tgnd = 15°C with a 

constant heat transfer coefficient of hCF = 1.18 W.m⎯².K⎯¹; the walls and the ceiling are 

both made of 4 in. (0.102 m) polyurethane insulation under outside or ambient 

temperature of Tamb = 35°C, with a constant heat transfer coefficient of hPU = 0.23 

W.m⎯².K⎯¹. There is also a lightings load of qlight = 10 W/m², as recommended in IIR 

(1966), that can be considered as a uniform heat flux added to the heat flux through the 

ceiling. 

It may be noted that moisture content (humidity ratio) of the air in a refrigerated 

space is expected to be fairly low and therefore, the water vapor in the air has not been 

included as a part of the simulation model. In addition, the model considered only the 

steady-state operation of the warehouse and thus did not include periodic maintenance 

operations such as defrosting of the cooling coil. 
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7.2 Computational Model 

7.2.1 Governing Equations 

The Reynolds decompositions approach with a mixing length turbulence model is 

used for modeling the air flow and heat transfer. Steady state, incompressible flow of air 

is considered. The fluid properties were taken as constants except the varying density for 

buoyancy term in the momentum equation. The equation for the conservation of mass, 

momentum, and energy can be written for the 3-D model in rectangular coordinates as: 
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7.2.2 Boundary Conditions 

The boundary conditions on velocity are 

 On CU outlet: 0, === zyx uuVu  (7.6) 

 On planes of symmetry: 0=yu  (7.7) 

 On all solid surfaces: 0=== zyx uuu  (7.8) 

The boundary conditions on temperature are 



www.manaraa.com

 115

 On CU outlet: coolTT =  (7.9) 

 On floor surface: ( )TTh
n
Tk −=

∂
∂

gndCF  (7.10) 

 On wall surfaces: ( )TTh
n
Tk −=

∂
∂

ambPU  (7.11) 

 On ceiling surface: ( ) lightambPU qTTh
n
Tk +−=

∂
∂  (7.12) 

 On other boundary surfaces: 0=
∂
∂

n
T  (7.13) 

7.2.3 Numerical Solution 

For each simulation, the governing equations along with the boundary conditions, 

Equations (7.1) through (7.13), were solved using the finite element method as discussed 

in section 2.4. Figure 7.3 shows the mesh of about 6000 quadrilateral-element for the 2-D 

model. It can be observed that the fine mesh of total thickness of 5 cm consisting of three 

layers with 1 cm thickness of the first layer concentrate along the fluid-solid interfaces, 

such as the floor, the ceiling, the walls, the cover and the inlet and outlet of the CU, and 

the gaps between the packages. The remaining area is filled with square element of 

regular size of 10 cm × 10 cm. The fully coupled successive substitution algorithm was 

used to solve the finite element equations with tolerances of 0.0001 and 0.01, for the 

relative error and residual convergence criteria, respectively. For the 3-D model, a mesh 

of about 109000 eight-node hexahedral elements as shown in Figure 7.4 was used with 

the segregated algorithm to solve the finite element equations with a tolerance of 0.001 

for the relative error convergence criterion. It can be observed that the 3-D mesh has the 

pattern on the plane of symmetry similar to that of the 2-D mesh. 
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(a) Full view 
 

 
(b) Expanded view of cooling unit (c) Expanded view of first package  

Figure 7.3 Quadrilateral-element mesh for 2-D model of refrigerated warehouse with cooling unit and 
packages 
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Figure 7.4 Hexahedral-element mesh for 3-D model of refrigerated warehouse with cooling unit and 

packages 
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7.3 Results and Discussion 

Figure 7.5 presents the solution of air velocity, pressure and temperature for the 3-

D base case (simulation case 1). Figure 7.5a shows the 3-D streamlines of the air flow 

inside the warehouse as spatial curves originated from nine representative starting points 

distributed on a 3×3 matrix on the blowing opening of the CU. These streamlines are 

numbered from 1 to 9 with color-coded legend for easily tracing their paths. Figure 7.5b 

presents the distribution of air speed by displaying respective interpolated filled color on 

orthogonal slice planes. The slice planes, selected in such a way that can reveal the 

structure of the volumetric data, include the planes perpendicular to y- and z- directions 

and cutting through the center of the products. 

Parts (a) and (b) of Figure 7.5 can be examined simultaneously to construct the 

image of the flow field in the domain. The cold air flow cooled by the coil on the suction 

side of the CU pulled by the fan blows into the space at full speed of 0.5 m/s. Under the 

influence of the buoyancy effect, the colder air which has higher density goes down 

smoothly as shown in both parts (a) and (b) of Figure 7.5 for all streamlines. Most of this 

main flow drops down toward the floor but soon gets pulled back to feed to the suction 

side of the CU under the effect of lower pressure there created by the fan. This forms a 

short circuit for most of the streamlines. The air speed in the short circuit zone is the 

highest in the whole domain (0.2 m/s and more). This kind short circuit can be happening 

several times to a flow until it exits the CU at an "unfavorable" starting point. There, 

because the zone under the CU is already filled of short-circuit flows; the "unfavorable" 

flow is forced to go outside that zone, all the way down to the floor. There it makes a turn 

to avoid the obstacles (the product packages) to the unoccupied zone in the aisle, sweeps 
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through the floor until reaching the back wall then goes up, fills the space above the 

stacks under the ceiling and moves toward the CU to get forced down to the floor again 

and repeat the cycle until it get to a "favorable" spot allow it to feed to the CU or its 

momentum got dissipated dry and it dies out at some stagnant point. The flow along the 

back wall can never reach to the ceiling, leaves a still air zone there. Even though there 

are gaps between the packages and the floor and the wall as well as between themselves, 

the major flow mainly in favor of flowing in the open zone of the aisle at slow speed 

(about 0.1–0.2 m/s). However, there are also minor flows induced by natural convection 

due to temperature difference from the floor and the back wall that moves inside the gap 

next to the back wall as well as the gaps between the packages. 

Figure 7.5c presents the isosurface plot for pressure distribution. The value of air 

pressure is the same on an isosurface. It can be observed that most of the isosurfaces are 

almost flat, well-layered, and perpendicular to the vertical direction. This pattern implies 

that vertical flow is in favor thus natural convection dominates the air flow field. The 

effect of forced convection (horizontal direction) can only be observed in the region close 

to the outlet opening and the short circuit zone where the isosurfaces have high curvature. 

Figure 7.5d presents the slice planes plot of temperature distribution for 

simulation case 1. Wherever the air speed is high, such as in the main air flow or in the 

circulations close to the exhaust opening, the temperature is lower due to low temperature 

in the supply air itself or by well mixing it with the heated air inside the room. The strong 

short circuit airflow creates a low temperature zone around and under the CU where the 

cold air blows into the room and has not picked up much heat in the room yet. The first 

pile of product packages benefit from this zone by heat conduction from the products to 
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the neighboring cold air resulting in low temperature of about 1°C in this pile. Similarly, 

the packages also have low temperature on the aisle side because of lower temperature 

there (around 2°C) due to the mixing effects by circulations of the velocity field. Since 

there is almost no flow near the floor under the packages, there is a high temperature 

zone there that includes the maximum temperature. However, the air gap between the 

floor and the first stack of packages quite effectively prevents this high temperature on 

the floor to affect the products directly. While the maximum temperature on the floor is 

about 8-9°C, the highest temperature on the bottom of these packages is only about 4-

5°C, which is still in the practical range for refrigerated warehousing. The heated up air 

on the floor forms some natural convection flows inside the vertical gaps,  thus transports 

some heat from the floor to the higher stacks and rises the temperature up to a few degree 

although not significantly since that is not capable of spreading widely into the products. 

The still air under the ceiling toward the back wall results in a zone of higher temperature 

where its pattern shows that heat transfer is mainly by conduction. 

Figure 7.6 presents the air velocity field and the temperature distribution for the 2-

D base case (simulation case 2). In Figure 7.6a, the streamlines of the airflow are plotted 

on the filled background with color representing the air speed. The fan of the CU pulls 

the air through the coil banks to cool it down and blows the cooled air from its outlet into 

the refrigerated space. This cold airflow has higher density compared to surrounding 

warm air thus it tends to go down and feeds back to the CU inlet because of the low 

pressure there created by the fan. This forms a major short circuit circulation under the 

CU. Because of the initial momentum, a part of the flow sweeps over the top of the stacks 

then returns to the inlet. 
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(a) Streamlines (b) Speed, m/s 
 

(c) Pressure, Pa (d) Temperature, °C  
Figure 7.5 Distributions of air velocity, pressure, and temperature for simulation case 1 (3-D model, 

base case: X = 1.1 m, Z = 3.3 m) 
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It can also be observed in Figure 7.6a that a minor part of the flow find their ways 

in the gap between the floor and the packages, reaches the back wall and gets forced up 

by the natural convection of hot air at the back wall to return to the CU inlet along the 

ceiling. In comparison to the 3-D model, these observations predict the flow pattern 

accurately to some degree such as the short circuit flows and the flow along the floor and 

the back wall. 

Figure 7.6b shows the distribution of air pressure for simulation case 2 in isobar 

contours. It can be observed that this 2-D pressure contour plot looks just like a cross 

section of the 3-D isosurface pressure plot in Figure 7.5c cut by a plane perpendicular to 

the y-direction. This supports the similar pattern of the solutions from 2-D and 3-D 

models. 

In Figure 7.6c, the temperature distribution inside the refrigerated space is 

represented by a filled color plot that shows different level of temperature in different 

regions of the domain. The circulation formed by the combined effects of forced 

convection (due to the forced flow at the outlet and negative pressure at the inlet) and 

natural convection (due to buoyant force because of temperature-dependent variable 

density of air) creates a well-mixed region under the CU with uniform low temperature as 

the result. There is heat leak through the front wall, but the circulation of cold air is 

strong enough to sweep that wall and effectively removes the heat from it, leaving only 

floor and ceiling corners at slightly higher temperature. Since the second and third groups 

of circulation cannot reach the ceiling, especially in the part toward the back wall, with 

that much effectiveness, a still air region remains there, where heat conduction dominates 

with its pattern shown in Figure 7.6c. 
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Figure 7.6c also shows that high temperature regions are found at back wall – 

floor corner and its neighborhood as the heat leak modeled by linear heat transfer 

coefficient comes through there without any significantly strong air stream to remove it. 

In comparison to the distribution of temperature for 3-D model in Figure 7.5d, it can be 

seen that respective patterns are also very similar. The 2-D distribution of temperature 

can be considered as that on one y-direction cross section of the 3-D model. 

For assessing the cooling effectiveness and uniformity for the whole refrigerated 

space, we consider the following parameters: maximum temperature, mean temperature, 

and standard deviation of distributed temperature around the mean temperature. The first 

two expresses how low the temperature can get which shows the effectiveness of the 

whole system. The last parameter represents the uniformity of temperature which is an 

important factor in refrigeration storage. Generally, the lower the temperature (maximum 

and mean) and standard deviation, the better it is. 

The results of these parameters for simulation case 1 (3-D) and simulation case 2 

(2-D) are given in the first two rows of Table 7.3. The maximum temperatures for both 

are almost the same. The mean temperature for the 2-D model is lower than that for the 3-

D model, whereas the standard deviation for 2-D model is significantly higher than that 

for the 3-D model. This can be explained as that the 2-D model implies that the packages 

are extended from one plane of symmetry to another one while the cold air supplied to 

both cases are at the same flow rate which leaves the 2-D model less room volume to 

cool thus the lower mean temperature. However, the 2-D model has no cooling from the 

side (aisle side) as the 3-D model does thus the less uniformity or higher standard 

deviation. 
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(a) Streamlines - speed, m/s 

(b) Pressure, Pa 

(c) Temperature, °C  
Figure 7.6 Distributions of air velocity, pressure, and temperature for simulation case 2 (2-D model, 

base case: X = 1.1 m, Z = 3.3 m) 
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Figure 7.7 shows the distributions of maximum, mean, and standard deviation of 

temperature over the refrigerated space as functions of blowing air velocity for the 

simulation cases 1–7 with the CU at its base location. The maximum temperature 

occurred at the region on the floor under the third pile (the second one from the back 

wall, Figure 7.2a). It can be observed that higher blowing air velocity will give lower 

temperature, both maximum and mean, and lower standard deviation. Therefore, the 

higher blowing air velocity is the better. However, in practice, the blowing air velocity is 

limited by equipment specifications and more importantly, cost effectiveness. 

Table 7.3 (from the second row down to the end for the results of 2-D simulations 

only) shows how the CU location would affect the thermal effectiveness of the system, 

again with maximum and mean temperatures and standard deviation. It can be observed 

that the location SE (simulation 10 in Table 7.2) gives the lowest mean temperature and 

the lowest standard deviation, whereas the location E (simulation 14 in Table 7.2) gives 

the lowest maximum temperature. 

Figure 7.8 presents the maximum temperature, the mean temperature, and the 

temperature standard deviation as functions of the CU location (X and Z) in the form of 

isotherm contours, which show the tendencies of these temperature parameters as the CU, 

moves away from the central (base) location. These functions are found by applying the 

cubic spline interpolation method on the obtained data. It is observed that the maximum 

temperature, the mean temperature, and the standard deviation decrease as the CU moves 

to locations E, S, and SE, respectively. Generally, the compromised direction to SE can 

be the best choice. 
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Figure 7.7 Effects of blowing air speed on temperature distribution 

 

  
 (a) Maximum temperature, °C 

  
 (b) Mean temperature, °C

 

  
  (c) Standard deviation, °C  

Figure 7.8 Effects of cooling unit location on temperature distribution 
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Table 7.3 Effects of cooling unit location to temperature distribution 

CU location Max. temp., °C Mean temp., °C Std. deviation, °C 

Central (3-D) 8.80 2.17 1.13 

Central (2-D) 8.79 2.10 1.50 

NE 9.20 2.58 1.53 

NW 9.25 2.87 1.53 

SE 8.71 1.47a 1.20b 

SW 9.10 1.78 1.51 

N 9.08 2.63 1.50 

S 9.47 1.60 1.26 

E 8.47c 2.07 1.28 

W 9.10 2.16 1.53 

aLowest value of mean temperature among 2-D cases. 
bLowest value of standard deviation among 2-D cases. 
cLowest value of maximum temperature among 2-D cases. 

 

7.4 Conclusions 

Numerical modeling can be used conveniently to predict fluid flow and heat 

transfer and for the assessment of thermal uniformity in refrigerated warehouses. Instead 

of doing simulations by using expensive 3-D models, proper 2-D ones can be used to 

reduce computing cost while still producing useful results that are accurate to some 

reasonable degree. This replacement is critical where many design parameters and their 

interactions involve resulting in a large number of simulations required in limited time 

and computing resources that makes the use of only 3-D simulations impractical. As 

blowing air velocity from the cooling unit increases, better cooling effectiveness and 
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uniformity (lower maximum and mean temperature and lower standard deviation) can be 

achieved. The effect of the location of the cooling unit to temperature distribution is 

complicated with the interaction of positions in x- and z- directions. The best temperature 

range and uniformity can be obtained with the CU moved toward the SE location. These 

results can be very useful for designing and operating refrigerated warehouses. 



www.manaraa.com

 129

Chapter 8 Analysis of Thermal Comfort Enhancement by Using Ceiling Fan in Air-
Conditioned Residential Room 

8.1 Problem Description 

This chapter presents a study on thermal comfort in a typical residential room as 

shown in Figure 8.1. The room includes an inlet (supply grille) and an outlet (return 

grille) for the air-conditioning system, a ceiling fan suspended from the ceiling in the 

middle of the room with a light set attached to it, and a person standing under the fan. A 

2-D model for the room is shown in Figure 8.2. The essential dimensions are denoted in 

general forms as L1 to L12. The numerical values used for the computations in this study 

are given in Table 8.1. The crossed regions that represent the person and the fan-lights 

assembly are not part of the computational domain. The outer region around the person 

(enclosed by the dashed lines) of the width of L6 is a computational subdomain named 

“Body” used for assessing thermal comfort factors in the surrounding air wrapping 

around the person thus expectedly give better evaluation of the comfort level of the 

person. The 2-D model can approximate quite well the transport phenomena at the 

symmetry plane. The data of imposed air speeds and heat and mass fluxes are also taken 

equivalent values calculated such that the approximation takes into account the effects of 

finite dimensions of the solid surfaces (the person, fan, light, etc.) in the room. The forced 

flow from the ceiling fan is characterized by the air velocity Vfan normal to the plane of 

the fan blades. The simulation cases are given in Table 8.2. 
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Figure 8.1 Residential room with air conditioner and ceiling fan 

 

 
Figure 8.2 Two-dimensional model of air-conditioned room with ceiling fan 
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Table 8.1 Numerical values of fixed dimensions in Figure 8.2 

Dimension L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Value, m 3.70 2.70 1.85 0.26 1.70 0.10 1.07 2.30 2.33 0.20 0.20 0.25

 

Table 8.2 Simulation cases for air-conditioned room with ceiling fan 

Case # 1 2 3 4 

Fan normal air speed Vfan, m/s 0 1.1 1.3 1.5 

 

The supply air has a velocity normal to the opening with a speed of Vsupply = 1 

m/s. Its temperature and contaminant concentration are Tsupply = 22°C and wsupply = 0.0148 

kg/kg air. The fan motor gives off a heat flux of qmotor = 10 W/m² uniformly distributed 

on its cover. The light set under the fan gives off a heat flux of qlight = 300 W/m². The 

outer surface of the person is considered of constant temperature Tbody = 34°C and also 

giving off a mass flux of water vapor due to respiration and sweating of qw,body = 5×10⎯7 

kg.m⎯².s⎯¹. 

The constant fluid properties of air were taken at a reference temperature of Tref = 

20°C = 293.15 K as follows: ρ = 1.2 kg/m³, μ = 1.8×10⎯5 Pa.s, cp = 1004 J.kg⎯¹.K⎯¹, k = 

0.026 W.m⎯¹.K⎯¹, β = 0.0034 K⎯¹, and Dw/a = 2.5×10⎯5 m²/s. 

8.2 Computational Model 

8.2.1 Governing Equations 

The Reynolds decompositions approach with a mixing length turbulence model is 

used for modeling the airflow and heat transfer. Steady state, incompressible flow of air 

as a multi-component fluid that includes dry air and water vapor is considered. The fluid 
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properties were taken as constants except the varying density for buoyancy term in the 

momentum equation. The equation for the conservation of mass for the air mixture (or 

carrying fluid), momentum, and energy and the conservation of mass of water vapor can 

be written for the 2-D model in rectangular coordinates as: 
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8.2.2 Boundary Conditions 

The boundary conditions on velocity are 

 On supply opening: 0,supply == yx uVu  (8.6) 

 On fan blade surface: fan,0 Vuu yx ==  (8.7) 

 On all solid surfaces: 0== yx uu  (8.8) 

The boundary conditions on temperature are 

 On supply opening: supplyTT =  (8.9) 

 On person surface: bodyTT =  (8.10) 
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 On motor cover surface: motorq
n
Tk =

∂
∂  (8.11) 

 On light surface: lightq
n
Tk =

∂
∂  (8.12) 

 On other boundary surfaces: 0=
∂
∂

n
T  (8.13) 

The boundary conditions on water vapor concentration are 

 On supply opening: supplyww =  (8.14) 

 On person surface: bodyw,w/a q
n
wD =

∂
∂ρ  (8.15) 

 On other boundary surfaces: 0=
∂
∂

n
w  (8.16) 

8.2.3 Numerical Solution 

For each simulation, the governing equations along with the boundary conditions, 

Equations (8.1) through (8.16), were solved using the finite element method as discussed 

in section 2.4. Figure 8.3 shows the mesh of about 37000 quadrilateral elements for the 2-

D model. Parts (b) and (c) of Figure 8.3 give the expanded view of the mesh at complex 

geometry boundaries. The fully coupled successive substitution algorithm was used to 

solve the finite element equations with tolerances of 0.0001 and 0.01, for the relative 

error and residual convergence criteria, respectively. After the solution of the primary 

variables (velocity, pressure, temperature, and water vapor concentration) was found, 

relative humidity distribution was computed by using Equation (2.22). PMV value was 

calculated for a standing, relaxed person (with metabolic rate of 1.2 met) dressed in 

summer attire (with clothing insulation of 0.5 clo) based on the data in the numerical 

solution, using Equation (2.25), and PPD value, using Equation (2.30). 
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(a) Full view 
 

 
(b) Expanded view of fan motor/light region (c) Expanded view of person's upper part region  

Figure 8.3 Quadrilateral-element mesh for 2-D model of room with person and ceiling fan 
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8.3 Results and Discussion 

Figure 8.4 presents the distributions of air velocity, temperature, and relative 

humidity for the base case, simulation case 1, when the ceiling fan is not in use. In Figure 

8.4a, the velocity field is represented by the streamlines on the filled background with the 

color proportional to air speed. The cool airflow enters the room through the supply 

diffuser on the left wall at uniform full speed V (1.0 m/s). The incoming flow goes 

straight horizontally at first since the temperature in the region far from the lights and the 

person has moderate low temperature that the buoyancy effect is insignificant. As the air 

flow approaches the middle part of the room where higher temperature distributed around 

the lights and the person is present, the buoyancy effect becomes stronger and tends to 

pull the main stream of the air flow down. However, since the inlet airflow has a quite 

high speed, a small part of the airflow splits up and continues to sweep along the ceiling 

at reducing speed before it goes down along the right wall to the outlet. The main stream 

goes down at the lights to the top of the person, sweeps through the upper part of him or 

her at a relatively high speed. Then the main stream splits again; the main part, still has 

momentum, bends to the left, slightly touches the floor and goes up, makes a clear strong 

circulation in the supply side of the room, the other part of the stream moves along the 

floor to the outlet at reducing speed.  

Figure 8.4b shows the distribution of temperature for simulation case 1. The 

circulation in the supply side of the room creates a good mixing zone where the 

temperature is just about the inlet temperature or one, one and a half centigrade degree 

more. In the exhaust side of the room, since most of the streams with significant 

momentum just sweep along the ceiling, the wall, or the floor, the major region is left 
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untouched or moving very slow. In this region, heat transfer is mostly occurring by 

diffusion. In Figure 8.4b, the core has a higher temperature and it reduces towards the 

ceiling, the wall, and the floor, which shows a diffusion pattern. It can be also observed 

that there are thin layers of high gradient and high temperature around the person and the 

lights, as well expected. 

Figure 8.4c is the plot of the distribution of relative humidity, one of the important 

factors for assessing thermal comfort. Relative humidity is a function of absolute 

pressure, water vapor concentration, and temperature. Its distribution is computed from 

Equations 8-10. Since the gage pressure in the room is found very small, on the order of 1 

Pa, compared to the atmospheric pressure, on the order of 101 kPa, it has little effect on 

relative humidity. The water vapor concentration has some effect on relative humidity, 

but it is still small compared to the effect of temperature. The higher the temperature is, 

the lower the relative humidity gets, and vice versa. This explains the somewhat identical 

pattern between the distributions of temperature and relative humidity, except in opposite 

directions. Near the lights and the person, since the temperature is quite high, the relative 

humidity is low. The high relative humidity is concentrated in the supply side of the room 

where there is low temperature as the result of the strong circulation as discussed 

previously. On the other hand, the exhaust side of the room has lower relative humidity 

as the temperature in this region is higher. 

Figure 8.5 presents the distribution of air velocity, temperature, and relative 

humidity for simulation case 2 in which the ceiling fan is in use and it produces a normal 

(to blades plane) air speed of 1.1 m/s on the same order as the air flow through the supply 

inlet (1.0 m/s). In Figure 8.5a, the airflow field by streamline contours plotted on color-
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coded speed background. With the presence of the velocity from the ceiling fan, the flow 

pattern is totally changed. The supply airflow is pulled towards the fan right after 

entering the room and creates a circulation similar to that in the basic case, but much 

stronger. The supply side of the room becomes very well mixed. But different than the 

basic case, the air velocity from the fan also creates a strong circulation in the exhaust 

side of the room. However, there is no cool air supply on this side to induce the buoyancy 

effect, thus the circulation created by forced convection is just circling at high region 

without touching the floor as the circulation in the supply side does. There is also a weak 

stream sweeping along the floor to the outlet, similar to the base case (simulation case 1). 

Figure 8.5b presents the distribution of temperature for simulation case 2. The 

well-mixed region in the supply side still has lower temperature as in simulation case 1. 

However, the air in the exhaust side of the room is also well mixed, but resulted in more 

uniformly distributed higher temperature compared to simulation case 1 since now the 

major means of heat transfer is convection. Only a small zone close to the floor still has 

the diffusion characteristics.  

Figure 8.5c shows the distribution of relative humidity for simulation case 2. This 

plot, again, shows how strongly the relative humidity depends on temperature in the 

room. The region in the exhaust side now has lower and uniform relative humidity, since 

the temperature is higher and uniform. The air in the supply side has higher relative 

humidity, since the temperature is lower. However, the relative humidity in this region is 

not as high as that in simulation case 1, which suggests that the temperature in this zone 

is not as low as that in simulation case1. Therefore, it seems that the use of an additional 

ceiling fan increases the temperature in both sides of the room. 
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(a) Streamlines and speed, m/s 
 

(b) Temperature, °C 
 

(c) Relative humidity, %  
Figure 8.4 Distributions of velocity, 

temperature, and relative humidity for simulation 
case 1 

(a) Streamlines and speed, m/s 
 

(b) Temperature, °C 
 

(c) Relative humidity, %  
Figure 8.5 Distributions of velocity, 

temperature, and relative humidity for simulation 
case 2 
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For a more detailed evaluation on how the air speed from the ceiling fan affect the 

local PMV values distributed around the person, Figure 8.6 shows a comparison of PMV 

distribution in the occupied site for simulation cases 1 (no ceiling fan used) and 2 (with 

ceiling fan used). For simulation case 1, thermal comfort is at most satisfied (PMV = 0) 

over a large region on the right while it tends to be cooler on the left, especially on the 

upper part of the body of the person. For simulation case 2, under the influence of the 

ceiling fan, the high PMV regions narrow down on both sides. The low PMV distribution 

implies that with the use of a ceiling fan, supply air temperature (thus room temperature) 

can be increased but thermal comfort level is as satisfied as that for the case of no ceiling 

fan used. 

The above discussion on the distribution of temperature, relative humidity, and 

the PMV (parts (b) and (c) in Figure 8.4 and Figure 8.5, and Figure 8.6) within the room 

for two cases: with and without a ceiling fan is reasonable, in qualitative sense. Because 

of the low temperature of the supply airflow, the air in one side of the room that near the 

supply grille has lower temperature (thus higher relative humidity and lower PMV) than 

the other part. However, for both cases, part (b) in Figure 8.4 and Figure 8.5 shows a 

difference of 3–4°C between the two halves of the room separated by the person. This 

temperature difference is unrealistic and is the result of the 2-D simplification of a 3-D 

flow situation. Since the width of the person is small compared with that of the room, the 

airflow supplied to the room is most likely going around the person by his or her side to 

flow toward the exhaust opening. This airflow plays an important role in convective heat 

transfer that keep the air in the room well mixed and having less temperature difference 

between two sides of the person. 
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 (a) Simulation case 1 (b) Simulation case 2  

Figure 8.6 Comparison of PMV distribution between simulation cases 1 and 2 
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The 2-D model under study has no means to accommodate the airflow around the 

side and therefore it cannot describe the temperature distribution accurately. In the 2-D 

model, the shapes represented the body of the person and the fan motor/light assembly 

are the two obstacles extended through the whole depth of the model (in the direction 

perpendicular to the page). Therefore, the airflow is allowed to pass through only three 

gaps between the floor, the two obstacles, and the ceiling. The gap between the floor and 

the body of the person was designed in an attempt to compensate this limitation so that 

the airflow around the side that is missing from the 2-D model can be shared by two 

airflow ways on top and bottom of the body, not only the top one. Despite the limitation, 

a 2-D model is less expensive to set up and to run simulations. On the other hand, with 

proper considerations, a 2-D model can still give useful results. 

Although the 2-D model has its limitation in describing the detailed distributions 

of the fluid flow and temperature, thus the related parameters such as relative humidity 

and PMV, the average values of temperature and relative humidity are in close range with 

the results from James et al (1996). Table 8.3 compares the ranges of temperature and 

relative humidity results from the 2-D simulations to the typical values at satisfactory 

thermal comfort given in the energy simulation and experimental study by James et al. 

(1996). The similar in ranges suggests that the use of average values from the numerical 

solution of the 2-D simulations is reasonable. 

Table 8.3 Comparison of temperature, relative humidity, and PPD for thermal comfort 

 Temperature, °C Relative humidity, % PPD, % 

Simulation cases 1–4 23.4–25.2 75–84 5–23 

James et al. (1996) 25.6–26.7 60–80 10 
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Figure 8.7 presents the dependency of the mean temperature taken over the entire 

room as well as in the subdomain “Body” which is a thin layer around the person. It can 

be observed clearly that temperature does increase as the result of the use of an additional 

ceiling fan in an air-conditioned room in the entire domain as well as in the subdomain. 

More than that, as the air speed from the fan increases, the mean temperature increases as 

well. This happens because the running ceiling fan while increasing circulation brings 

down the still warm air under the ceiling and around the fan motor and keeps it circling 

inside the room without being effectively removed through the outlet and thus reduces 

the cooling effect of the increased air speed from the fan. At first this observation may 

raise the question of what is the point of using a ceiling fan if it makes people hotter 

instead of cooler. It is known that thermal comfort is dependent on temperature, relative 

humidity, and air speed (“chilling effect”). The thermal comfort factor should take into 

account the effects of the air speed around the person. The increases of mean air speed, 

especially in the subdomain around the person will have significant impact on thermal 

comfort. PMV is the proper factor for the evaluation of thermal comfort in this situation. 

Figure 8.8 shows that PMV for the room is always lower than PMV for the subdomain 

“Body”. This implies that in a possible experiment if the measurements were not done 

close enough to the body the real PMV is always underestimated. As the air speed from 

the fan increases, PMV decreases in both domains. This decreasing trend is good for the 

cooling situation. If there are additional heat loads, the PMV curves will be shifted up, a 

decreasing trend is critical to keep the environment within the comfort limits. If there is 

no additional heat load, the temperature setting for the air-conditioner can be raised a few 

degrees for energy savings while the ceiling fan maintains the same comfort level. 
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Figure 8.7 Effect of fan normal air speed on mean temperature 
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Figure 8.8 Effect of fan normal air speed on thermal comfort 
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Table 8.4 shows that the mean air speed increases as the normal air speed from 

the fan increases and the mean air speed values taken over the entire room are always 

higher than that taken over the subdomain “Body” around the person. Apparently, as the 

air speed from the fan increases, the mean air speeds also increase. The effect of the use 

of elevated air speed used to increase maximum temperature while maintaining thermal 

comfort for affected occupants is given in ASHRAE Standard 55 (2004, section 5.2.3, 

Figure 5.2.3). The data given in this standard applies to a lightly clothed person (clothing 

insulation 0.5–0.7 clo) engaged in near sedentary physical activity (metabolic rates 1.0–

1.3 met). Those ranges well cover the cases under investigation (0.5 clo, 1.2 met). Using 

the mean air speeds around the body to estimate the potential increased temperature, the 

standard shows that for simulation case 1, where the air speed is around 0.2 m/s, the 

offset temperature is almost negligible, while for simulation cases 2–4, where the air 

speed ranges in 0.4–0.6 m/s, the offset temperature can reach up to 3–4°C. For estimating 

the energy savings, the results from the study by James et al. (1996) show that an increase 

of 0.6°C and 1.1°C with fans in use from a base set point of 25.6°C without fans yields to 

an average cooling energy savings of 2.6% and 14.9%, respectively. 

The above quantitative results confirm the predictions made previously based on 

the PMV distribution contours (Figure 8.6) and the average value of PMV (Figure 8.8) in 

the occupied zone. 

Table 8.4 Effect of fan normal air speed on mean air speed in room and around person 

Fan normal air speed, m/s 0 1.1 1.3 1.5 

Room mean air speed, m/s 0.235 0.571 0.652 0.743 

“Body” mean air speed, m/s 0.223 0.459 0.567 0.634 



www.manaraa.com

 145

8.4 Conclusions 

The results from the numerical simulations provided a view of the fluid flow and 

heat transfer in a residential room with air conditioner and ceiling fan using a 2-D model. 

Althought the 2-D model cannot describe the fluid flow and heat transfer within the space 

accurately due to its 2-D simplification, with proper considerations, it gives qualititative 

assessment on the distributions of airflow, temperature, relative humidity, and PMV and 

quantitative assessment on their average values. 

For the base case where the fan is not in use, strong air circulations in the inlet 

side of the room keeps this side cooler due to convective heat transfer, while rather still 

air in the outlet side have the temperature distribution pattern of diffusive heat transfer. 

When the fan is in used, strong circulations forced by the fan induces convective heat 

transfer that creates more uniform temperature distribution in both sides of the room. 

However, these circulations also reduce the total heat removal performance of the system 

by circulating the heat around the room instead of moving it to the outlet resulting in a 

slight rise of overall temperature. The value of PMV calculated based on the average 

values of the relevant parameters (temperature, humidity, air speed) reflects better the 

condition of the person if the averaging is taken over the small region around the body 

rather than over the entire space (room). The former is higher than the latter about 0.5 on 

the ASHRAE thermal sensation scale (which is significant on a full scale from -3 to 3). 

As the air speed provided by the fan increases, the PMV value decreases toward cooler 

side and thus over-compensates the temperature rise to leave more adjusting margin for a 

cooling situation, allowing higher heat load while maintaining the same level of comfort 

compared to that of the case where there is air conditioner only with no ceiling fan. Air 
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speed from the ceiling fan of 1.1 to 1.3 m/s can allow an increase of temperature of the 

supply airflow from 22ºC (no fan in use) to about 25–26ºC. This characteristic has good 

impact on cooling energy savings through the higher temperature set point for the air 

conditioning system. 

For a better analysis of the effects of the use of ceiling fans in an air-conditioned 

room, 3-D model is required. As a pilot project, 2-D modeling and simulation provides 

useful ideas and fundamentals for the development of a 3-D numerical model that can 

describe the space better and thus produce more accurate solution. 
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Chapter 9 Three-Dimensional Analysis of Thermal Comfort and Contaminant Removal 
in Hospital Operating Room 

9.1 Problem Description 

This chapter presents a study on fluid flow and heat and mass (water vapor and 

contaminant gas) transfer in the air inside a hospital operating room and human thermal 

comfort and contaminant removal as the results. Figure 9.1a shows the basic setup in an 

operating room that includes a patient lying on an operating table with a surgical staff of 

four members standing around under a set of surgical lights. Fresh cold air is supplied to 

the operating room through two supply grilles located at high positions on the front (left) 

wall in order to remove the heat loads from the lights and the bodies of the occupants and 

contaminant, if any. Two exhaust grilles are located at low height on the opposite (right) 

wall. The occupants may give out water vapor due to respiration and evaporation on their 

skin. It is assumed that the patient also gives out contaminant gas. 

An operating room of dimensions 6.1 m × 4.3 m × 3.0 m (20 ft × 14 ft × 10 ft) is 

considered. All the supply and exhaust grilles have the same size of 0.61 m × 0.36 m (24 

in. × 14 in.). It can be observed that there is a plane of symmetry for the geometry of the 

room (and the subjects inside) as well as applicable physical conditions and boundary 

conditions. Due to this symmetry, only a half of the room needs to be modeled. Figure 

9.1b shows that the room in half is modeled as a three-dimensional box (6.1 m × 2.15 m 

× 3.0 m) that has six boundary planes namely plane of symmetry, floor, ceiling, and three 

walls (left, right and side walls). An x-y-z coordinate system is attached to the model with 
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the origin located at the bottom left corner on the plane of symmetry as shown in Figure 

9.1b. The lying patient in half is modeled as a horizontal rectangular box (1.7 m × 0.25 m 

× 0.3 m) at the middle of the room. Its bottom surface that faces the floor represents the 

operating table, which is heat and mass insulated. The other five surfaces model the body 

of the patient which is maintained at constant temperature Tbody = 34ºC and releasing 

water vapor and contaminant gas as constant fluxes qw,patient = 2.5×10⎯6 kg.m⎯².s⎯¹ and 

qc,patient = 1×10⎯5 kg.m⎯².s⎯¹, respectively. The standing staff members are modeled by the 

vertical rectangular boxes at both ends (staff members 1 and 2, both in half, 0.3 m × 0.25 

m × 1.7 m) and by the side of the patient (staff member 3, in full, 0.5 m × 0.3 m × 1.7 m). 

Similar to the patient, the staff models are considered as surfaces of constant temperature 

Tbody = 34ºC with a constant water vapor flux qw,staff = 4×10⎯6 kg.m⎯².s⎯¹ but zero 

contaminant flux. The surgical light set is also modeled as a box (0.7 m × 0.65 m × 0.3 

m) above the patient, whose bottom surface (facing the patient) is defined as the “lamp 

face” entity, on which the major heat flux qlamp-face = 100 W/m² goes through; and other 

surfaces are defined as the “lamp back” entity, on which a smaller heat flux qlamp-back = 5 

W/m² dissipates. Cool air is supplied to the operating room through the supply opening at 

a forced speed of V = 1 m/s and temperature of Tsupply = 20ºC. Concentrations of water 

vapor and contaminant gas in the supply air are wsupply = 0.01 and csupply = 0, respectively. 

The supply grille in the half-room model is located at a high position on the left 

wall with its center at the coordinates YS (from the plane of symmetry) and ZS = 2.45 m 

(from the floor). The exhaust grille is at a low position on the right wall with its center at 

the coordinates YE (from the plane of symmetry) and ZE = 0.55 m (from the floor). 
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 (a) Basic arrangement 
 

 
 (b) Computational model (half-room)  

Figure 9.1 Three-dimensional model of hospital operating room 
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The effects of the horizontal locations of the supply and exhaust grilles (YS and 

YE) are studied by running simulations with various combinations of these coordinates. 

Nine simulation cases are summarized in the first three columns of the first section of 

Table 9.1. 

Table 9.1 Simulation cases and comparison of results 

Air speed, m/s Temperature, °C Relative humidity, %
Case # YS, m YE, m 

OAa BZb OA BZ Ec OA BZ 

1 1.5 1.5 0.12 0.11 23.2 23.0 22.4 58.1 58.9 

2 1.5 0.5 0.11 0.10 23.2 22.9 22.4 58.2 59.2 

3 0.5 1.5 0.12 0.10 22.4 22.3 22.3 60.8 61.0 

4 0.5 0.5 0.12 0.09 22.4 22.4 22.4 60.6 60.7 

5 1.0 1.0 0.12 0.14 23.6 23.4 23.0 56.5 57.2 

6 1.0 1.5 0.12 0.14 23.6 23.4 22.9 56.6 57.3 

7 1.0 0.5 0.12 0.14 23.5 23.3 22.9 56.9 57.6 

8 1.5 1.0 0.11 0.11 23.3 23.0 22.4 57.8 58.7 

9 0.5 1.0 0.12 0.10 22.3 22.3 22.2 61.0 61.1 

Experimental data 

Mora et al. (2001)  19.5–25 24–63.5 

Balaras et al. (2002)  18.6–24.5 27–53 

Handbook/standard recommended conditions 

ASHRAE (1995)  20–24.4 50–60 

aOverall 
bBreathing zone 
cExhaust 
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For estimating the influence of these two factors (YS and YE) on the responses of 

interest (CRE, PMV, etc.), the method of design of experiment (DOE) (Box et al, 2005) 

is adopted. Since the number of factors is only 2, full factorial designs is used for better 

design resolution. For two-level experimental design, two numerical values (low and high 

levels) can be assigned to each factor to get a total of 4 experiments (simulations). 

For a three-level experimental design, three numerical values (low, medium, and 

high) can be assigned to each factor to get a total of 9 experiments (simulations). The 

experimental values for both coordinates are selected as: low = 0.5 m, medium = 1.0 m, 

high = 1.5 m. Simulation cases 1–4 respect to two-level design, and simulation cases 1–9 

for three-level design. 

The constant fluid properties of air were taken at a reference temperature of Tref = 

20°C = 293.15 K as follows: ρ = 1.2 kg/m³, μ = 1.8×10⎯5 Pa.s, cp = 1004 J.kg⎯¹.K⎯¹, k = 

0.026 W.m⎯¹.K⎯¹, β = 0.0034 K⎯¹, Dw/a = 2.5×10⎯5 m²/s, and Dc/a = 1.2×10⎯5 m²/s. 

9.2 Computational Model 

9.2.1 Governing Equations 

The Reynolds decompositions approach with a mixing length turbulence model is 

used for modeling the air flow and heat transfer. Steady state, incompressible flow of air 

as a multi-component fluid, which includes dry air, water vapor, and a contaminant gas, 

is considered. The fluid properties were taken as constants except the varying density for 

buoyancy term in the momentum equation. The equation for the conservation of mass for 

the air mixture (or carrying fluid), momentum, and energy and the conservation of mass 

of each species can be written for the 3-D model in rectangular coordinates as: 
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9.2.2 Boundary Conditions 

The boundary conditions on velocity are 

 On supply opening: 0,1 === zyx uuu  (9.8) 

 On plane of symmetry: 0=yu  (9.9) 

 On all solid surfaces: 0=== zyx uuu  (9.10) 

The boundary conditions on temperature are 

 On supply opening: supplyTT =  (9.11) 

 On occupants surfaces: bodyTT =  (9.12) 
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 On "lamp face" surface: face-lampq
n
Tk =

∂
∂  (9.13) 

 On "lamp back" surfaces: back-lampq
n
Tk =

∂
∂  (9.14) 

 On other boundaries: 0=
∂
∂

n
T  (9.15) 

The boundary conditions on water vapor concentration are 

 On supply opening: supplyww =  (9.16) 

 On patient surface: patientw,w/a q
n
wD =

∂
∂ρ  (9.17) 

 On staffs surfaces: w,staffw/a q
n
wD =

∂
∂ρ  (9.18) 

 On other boundaries: 0=
∂
∂

n
w  (9.19) 

The boundary conditions on contaminant concentration are 

 On supply opening: supplycc =  (9.20) 

 On patient surface: patientc,c/a q
n
cD =

∂
∂ρ  (9.21) 

 On other boundaries: 0=
∂
∂
n
c  (9.22) 

9.2.3 Numerical Solution 

For each simulation in Table 9.1, a mesh of about 65000 hexahedral elements was 

generated. Three layers of refined elements of 1 cm height for the first layer and growth 

ratio of 1.45 are assigned along fluid-solid interfaces where high rates of momentum and 

heat transfer exist. The rest of the domain is filled with regular 10 cm-size cube-shaped 
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elements. The supply and exhaust openings are mesh with the "map mesh" options at a 

finer element size to improve accuracy of the air flow rate in and out of the operating 

room. The governing equations and boundary conditions are solved numerically using the 

segregated algorithm with a tolerance of 0.001 for the relative error convergence 

criterion. The numerical solution includes three velocity components, pressure, 

temperature, water vapor and contaminant concentrations. Relative humidity is computed 

by using Equation (2.22). Predicted mean vote (PMV) is computed by using Equation 

(2.25). To assess the performance of the ventilation system of an occupied zone, the 

contaminant removal effectiveness (CRE) is used. The CRE factor involves the values of 

mean contaminant concentration at the supply and exhaust and in the breathing zone as 

(Hirnikel, 2002): 

  
SBZ

SE

CC
CC

−
−

=CRE  (9.23) 

For the present problem, the "breathing zone" as defined in ANSI/ASHRAE 

Standard 62.1-2004 as "the region within an occupied space between planes 3 and 72 in. 

(75 and 1800 mm) above the floor and more than 2 ft (600 mm) from the walls or fixed 

air-conditioning equipment". The "breathing zone" can be considered approximately the 

same as the "occupied zone" defined in ANSI/ASHRAE Standard 55-2004 as "the region 

normally occupied by people within a space, generally considered to be between the floor 

and 1.8 m (6 ft) above the floor and more than 1.0 m (3.3 ft) from outside walls/windows 

or fixed heating, ventilating, or air-conditioning equipment and 0.3 m (1 ft) from internal 

walls" and the "sterile zone" as mentioned in (Mora et al., 2001) which covers the actual 

working space of the surgical staff. 
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Figure 9.2 Hexahedral-element mesh for 3-D model of hospital operating room 
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9.3 Results and Discussion 

Figure 9.3 presents the distributions of the variables of interest for simulation case 

1. In Figure 9.3a, the distribution of air speed is displayed as respective interpolated filled 

color on orthogonal slice planes. The slice planes, selected in such a way that can reveal 

the structure of the volumetric data, include planes through the center of the grilles and 

the obstacles. Figure 9.3b shows the three-dimensional streamlines which begin at nine 

representative starting points on the area of the supply opening. These streamlines are 

numbered from 1 to 9 with color coded legend for easily tracing their paths. Parts (a) and 

(b) of Figure 9.3 can be examined simultaneously to view the image of the flow field in 

the domain. The cold air flow enters the room at full speed (1 m/s) through the supply 

opening located at a high position on the left wall. Under the influence of the buoyancy 

effect, the colder air, having higher density, goes down smoothly as shown in Figure 9.3b 

for all streamlines. While going down, the supply air flow is losing speed and spreading 

wider as it is reaching the floor. As the drive force due to the buoyancy effect depletes 

when the air flow touches the floor, it becomes influenced by lower pressure at the 

exhaust opening. Under this influence, most of the main air flow is pulled toward and 

exits through the exhaust opening at increasing speed in a curling move as shown in 

Figure 9.3b due to the nature of air flow of being not capable of making abrupt turns. A 

small part of the main air flow is influenced by complex drive force including the 

buoyancy effect in the hotter region close to the occupants' bodies. This type of flow can 

go up and down and travels back and forth in the room, even between the bodies of the 

occupants, at lower speed. It can be observed in Figure 9.3b that more disturbances (thus 

better air mixing) exist in the lower part of the exhaust side of the room. 
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(a) Speed, m/s (b) Streamlines 
 
 

(c) Pressure, Pa (d) Contaminant concentration, mg/kg air 
 
 

(e) Temperature, °C (f) Relative humidity, %  
Figure 9.3 Distributions of air velocity, pressure, contaminant concentration, temperature, and relative 

humidity for simulation 1 (YS = 1.5 m, YE = 1.5 m) 
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Figure 9.3c presents the isosurface plot for pressure distribution. The value of air 

pressure is the same on an isosurface. It can be observed that most of the isosurfaces are 

almost flat, well-layered, and perpendicular to the vertical direction. This pattern implies 

that vertical flow is of favor thus free convection dominates the air flow domain. The 

effect of forced convection (horizontal direction) can only be observed in the region close 

to the supply opening where the isosurfaces are no longer flat but having high curvature. 

There are also slight disturbances on the isosurfaces in the regions near the floor or non-

slip interfaces (the bodies of the occupants). 

Figure 9.3d shows the slice planes plot for the distribution of contaminant 

concentration in the domain. Contaminant concentration, considered to be released from 

the body of the patient at a constant rate, accumulates inside zone 1, "microenvironment" 

(Woods et al., 1986), bounded by the surgical staff, the patient, and the surgical lights, 

where the air slightly moves. This contaminant concentration, driven by the concentration 

gradient from the patient to the surrounding, transports mainly by diffusion to the outside 

of the surgical field, and then get carried away by the fresh main air flow to the exhaust 

opening. The high contaminant concentration exists in the surgical site and the almost 

still air at the ceiling while the lower part of the room has low contaminant concentration. 

The pattern of diffusive transport (gradually varying concentration) can be observed 

between these two regions. 

Figure 9.3e is the slice planes plot of temperature distribution for simulation case 

1. Wherever the air speed is high, such as in the main air flow or in the circulations close 

to the exhaust opening, the temperature is lower due to low temperature in the supply air 

itself or by well mixing it with the heated air inside the room. The main air flow creates a 
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low temperature region next to the supply opening where the cold air enters the room and 

has not picked up much heat in the room yet. In the surgical field, heat released from the 

lights induces natural convection flows that carried the heat up to the ceiling, resulting in 

a region of higher temperature there. Such effect is less expressed around the occupants' 

bodies where the diffusion pattern shows more clearly. The region of high temperature 

(24°C and higher) spreads in the higher part of the room and covers most of the ceiling 

with not much uniform distribution. The lower part of the room has lower temperature 

(23°C and less) but more uniform. The region of medium temperature (23–24°C) 

dominates in the activity space of the occupants (at the height of 1–2 m). 

Figure 9.3f is the plot of relative humidity distribution, a key factor of thermal 

comfort. Relative humidity is a function of absolute pressure, water vapor concentration, 

and temperature. Since the room gage pressure was found very small (on the order of 1 

Pa as shown in Figure 9.3c), compared to the atmosphere pressure (as high as 101 kPa), 

then it does not significantly affect the total (absolute) pressure, and thus almost does not 

affect the values of relative humidity. Wherever low temperature and high water vapor 

concentration exist, relative humidity is high also. Near the surgical lights, the relative 

humidity is very low because of the high temperature. Inverse to the temperature 

distribution, high humidity region existed in the lower part of the room and low humidity 

existed in the higher part of the room. 

Mean values of air speed, temperature, and relative humidity can be used for a 

quick assessment of the thermal comfort condition of a room. The mean values are taken 

over both the entire domain (overall-OA) and the occupied zone (considered the same as 

the breathing zone-BZ). For temperature, there are mean values taken over the exhaust 
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opening area as well. Besides of being closer to thermal comfort conditions to the 

occupants, these mean values also show a clearer trend of how they change as the design 

factors change. Table 9.1 shows a summary of these basic thermal comfort parameters for 

all simulation cases. For all simulations, the mean air speed varies in the range 0.10–0.14 

m/s, about a tenth of the nominal supply speed; the mean temperature varies in the range 

22.2–23.6°C (2–4°C higher than the supply temperature, 20°C); the mean relative 

humidity varies in the range 57–61%. For each simulation, the difference of the mean air 

speed in OA and BZ is about 0.01–0.02 m/s, which is not a significant amount; the 

difference of the mean temperature in OA and BZ can be up to 0.3°C, while the exhaust 

temperature can have a difference up to 0.9°C, both cases are quite significant for thermal 

comfort; the difference of mean relative humidity in OA and BZ is less than 1%. These 

observations suggest that for a simple assessment of thermal comfort, mean air speed and 

mean relative humidity taken over either OA or BZ can be used without much difference 

while it is best to use mean temperature taken over BZ since that is closer to the condition 

of the occupants. Temperature is obviously the most important criterion for a simple 

assessment of thermal comfort. In a cooling situation, the lower the temperature the better 

the thermal comfort condition is. It can be observed in Table 9.1 that the lowest mean 

temperature appears in the results of simulation cases 3, 4 and 9 (22.3–22.4°C in all three 

columns OA, BZ, and E). It occurs that for the minimum temperature case the exhaust 

temperature is very close to the bulk temperature (either BZ or OA) while it is not for the 

other cases. All of those simulations (3, 4, and 9) have YS = 0.5 m. It is also found that the 

mean temperatures are very close within each of the following groups of simulations: {1, 

2, and 8} (22.9–23.0°C in BZ, YS = 1.5 m) and {5, 6, and 7} (23.3–23.4°C in BZ, YS = 
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1.0 m). The observation suggests that the horizontal location of the supply grille YS is 

highly significant to temperature and the smaller YS the cooler it is. This is apparently a 

fortunate case where the significant effects of the factors (YS and YE) to the response of 

mean temperature show explicitly on a table which does not happen so often. A more 

systematic approach is to be introduced in later sections. Mean temperature and relative 

humidity are also compared with those from experimental data from actual hospital 

operating rooms reported by Mora et al. (2001) and Balaras et al. (2002) also given in 

Table 9.1. The data from these articles are collected from 2 and 20 operating rooms, 

respectively. The mean temperature and relative humidity from the numerical simulation 

shows reasonably good agreement with experimental data. These mean computational 

values in all cases are also within the recommended ranges specified by ASHRAE 

(1995). 

Figure 9.4 presents the computational results for simulation case 3, among the 

group of simulation cases with YS = 0.5 m that give the best cooling performance as 

found previously. Parts (a) and (b) of Figure 9.4 for air speed and streamlines show that 

the supply air flow moves horizontally without dropping down as in simulation case 1. 

This happens because of the heat released from the lights and occupants' bodies induces 

the natural convection flow which forces the heated air up directly into the incoming 

supply main flow and supports it to move straight. The streamlines plot in Figure 9.4b 

also show that the supply air flow moves around in the upper part and supply side of the 

room before exiting through the exhaust opening, resulting in better air mixing in this 

region. In this simulation, the exiting flow moves from far away straight to the exhaust 

opening without curling as seen in simulation case 1. 
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(a) Speed, m/s (b) Streamlines 
 
 

(c) Pressure, Pa (d) Contaminant concentration, mg/kg air 
 
 

(e) Temperature, °C (f) Relative humidity, %  
Figure 9.4 Distributions of air velocity, pressure, contaminant concentration, temperature, and relative 

humidity for simulation 3 (YS = 0.5 m, YE = 1.5 m) 
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The horizontal main air flow shows its effects explicitly in the pressure 

isosurfaces in Figure 9.4c. In the region dominated by the horizontal flow (as the 

combination of forced and natural convection) in the supply side and close to the ceiling, 

the pressure isosurfaces have very high curvature, while in the natural convection 

(vertical flow) dominated region on the exhaust side, the pressure isosurfaces have the 

horizontal flat plate form like simulation case 1. 

The slice planes plot for contaminant concentration in Figure 9.4d shows that the 

well mixed air region has positive effects on contaminant removal with a very low 

concentration. Contaminant is concentrated toward the exhaust side of the room close to 

the ceiling where the air is almost still as shown in Figure 9.4b. From that region down 

toward the floor, the diffusion pattern shows since convection transport is limited in that 

region due to the lack of strong air flow. In comparison to simulation case 1 since there is 

stronger air flow reaching into the surgical field, the contaminant in this region is less 

accumulated. However, convection transport leaves high contaminant concentration in 

front and on top of staff member 2 (standing on the exhaust side of the room) which 

should be taken into consideration. 

Figure 9.4e shows temperature distribution for simulation case 3. As the effects of 

the well mixed air flow, the region on the supply side has lower temperature (less than 

22°C). The lower part toward the exhaust side of the room also has such low temperature 

due to the effect of the exhausting flow. Scattered small regions of high temperature exist 

around the lights and bodies. The high temperature region in the upper part on the 

exhaust side of the room actually has moderate temperature (23–24°C) as compared to 

that in simulation case 1. 
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Relative humidity distribution in Figure 9.4f, again, shows an inverse image of 

temperature in Figure 9.4e. Humidity is 62–64% in the well mixed region and around 

56% in the still air region occupied the upper part on the exhaust side of the room. 

For simulation cases studied, 1 and 3, the air flow pattern plays an important role 

on both thermal comfort and contaminant control. Figure 9.5 shows a comparison of the 

air flow patterns for the two cases by examining their representative streamtubes. For 

each simulation, the streamtubes originated from three starting points numbered from 1 to 

3 on the supply opening are plotted. The ends of the streamtubes are numbered 

respectively. In Figure 9.5a, all these streamtubes go down at first due to buoyancy effect 

as discussed previously, then moves separate ways that represent three types: streamtube 

1, started closest to the obstacles, moves around the room follow a complex path, loses all 

of its momentum and dies out inside the room; streamtube 2 makes a curl before exiting 

through the exhaust opening and streamtube 3 exits straightly. In Figure 9.5b, the flow 

patterns are different. All three streamtubes move straight at first, but it can be observed 

that as the starting point getting farther away from the central region, the streamtubes 

tend to drop down slightly because of the lack of supporting vertical flows from the 

central region. Streamtube 1 absorbs the momentum from the vertical flows; move past 

the lights then goes back to the supply wall and forms a horizontal circulation close to the 

wall. It later goes down, moves through the surgical field in a crooked path and exits 

straightly through the exhaust opening. Streamtube 2 moves in a simple path around the 

lights then goes down and exits straightly. Streamtube 3 falls strongly for there is no 

supporting vertical flow far from the central region, and then dies out without exiting the 

room. 
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(a) Simulation case 1 (YS = 1.5 m, YE = 1.5 m) 

 
(b) Simulation case 3 (YS = 0.5 m, YE = 1.5 m)  

Figure 9.5 Comparison of air flow patterns from simulations cases 1 and 3 
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As mentioned previously, the effects of the design factors on a response on 

thermal comfort or contaminant removal should be modeled in a systematic approach. 

The design factors in this case are the horizontal locations of the supply and exhaust 

grilles (YS and YE). The responses of interest are mean (in BZ) contaminant concentration, 

CRE, PMV for the patient and the staff member 1–3. The first two responses are for 

contaminant removal and the last four are for thermal comfort. The values of these 

responses for 9 simulation cases are readily computed. How they are related to the design 

factor YS and YE is presented in Figure 9.6 to Figure 9.11 where each one presents three 

different curved surfaces by their contour plots explained as follows: 

Part (a): a response surface is built from 9 data corresponding to 3 values of YS 

and 3 values of YE by using the two-dimensional spline interpolation. 

Part (b): Generalized Linear Model (GLM) with Analysis of Variance (ANOVA) 

test is used. Details on GLM and ANOVA can be found in Searle (1971) or McCullagh 

and Nelder (1999). The starting GLM has the form: 

  2
E5

2
S4ES3E2S10 YKYKYYKYKYKKZ +++++=  (9.24) 

The response Z can be the mean contaminant concentration, CRE, or PMV for the 

patient or staff member 1–3. After fitting the 9 data into the GLM, Analysis of Variance 

(ANOVA) is used to test for significance of the terms in the model by using statistical 

significance (p-value). The terms that have p-value > 0.05 are dropped out of the model 

and another ANOVA is used to test for significance for the new model. The results show 

that all final 9 models for 9 responses involve only YS and YS² terms; all models have p-

value < 0.005 (99.5% reliable). A check using the normal probability plot for a graphical 

normality testing of residual (the difference between the predicted values from model and 
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the observed values from simulations) shows that the normality assumption is reasonably 

satisfied. The contour plots show vertical lines due to the absence of YE from the models. 

Part (c): a model based on only 4 data points from the first 4 simulations which 

forms a two-level experimental design with two factors. The model has the form: 

  ES3E2S10 YYKYKYKKZ +++=  (9.25) 

Since all the correlations of the responses to the design factors are nonlinear by 

nature, the pure linear model Z = K0 + K1YS + K2YE can never significantly fit. The 

interaction term K3YSYE is used to loosely replace the nonlinear effects. There are already 

4 unknown coefficients to find (K0, K1, K2, and K3) in this GLM, leaving no data for any 

ANOVA test for significance. This model is the same as the result from two-dimensional 

spline interpolation for 4 data on 2 values for each factor. A comparison of this simplest 

model and the more complex model can help drawing some conclusions which will be 

useful when there are many design factors to consider such that more than two-level 

experimental design is no longer proper. 

Figure 9.6 shows the correlation for mean contaminant concentration, the GLM 

becomes linear and shows good agreement with interpolation (9 data) with the minimum 

response corresponding to YS = 0.5 m. Interpolation (4 data) gives minimized response at 

YS = 0.5 m and YE = 1.5 m, showing insignificant effect of YE into the model. Therefore, 

to minimize the mean contaminant concentration in the operating room, a designer should 

consider placing the supply grilles closer to the centerline, while the exhaust grille 

locations do not make any significant difference. 

Figure 9.7 shows the correlation for CRE, which needs to be maximized. The 

GLM is quadratic to YS, barely conforms the interpolation (9 data). Both give the 
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maximized response respect to YS = 0.6–0.8 m. The interpolation (4 data) cannot describe 

the quadratic relationship and gives the maximum at YS = 0.5 m and YE = 1.5 m. Thus, in 

order to gain the maximum CRE, the intake location has to be around YS = 0.7 m. 

Figure 9.8 shows the correlation of PMV for the patient. The GLM is quadratic 

and in good agreement to the interpolation (9 data) giving the minimum at YS = 0.8–0.9 

m. The interpolation (4 data) cannot describe the quadratic relationship and gives the 

minimum at YS = 0.5 m and YE = 1.5 m. Therefore, the most comfortable condition for the 

patient can be achieved by moving the supply grilles away from the central location to 

around YS = 0.85 m. This is not surprising in an operating room since avoiding direct 

impingement of cold air while the patient does not have adequate insulated clothing will 

make him/her more comfortable. However, this action will result in higher level of mean 

contaminant concentration (Figure 9.6) which is not desirable. A possible solution can be 

to design for lower contaminant concentration while providing the patient with more 

thermally insulated clothing. 

Figure 9.9 shows the correlation of PMV for the staff member 1. The GLM is 

linear and in reasonably good agreement to the interpolation (9 data) and very good 

agreement to the interpolation (4 data). All give the minimum at YS = 0.5 m. Figure 9.10 

and Figure 9.11 show the correlations of PMV for the staff members 2 and 3. They are 

very similar. The GLM is quadratic and in good agreement to the interpolation (9 data) 

giving the minimum at YS = 0.5 or 1.5 m. The interpolation (4 data) although cannot 

describe the quadratic relationship but still gives one agreeable minimum at YS = 0.5 m. 

This suggests that moving the supply grilles closer to the center will provide higher level 

of comfort for all staff members. 
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(a) Interpolation (9 data) 
 

 
(b) GLM/ANOVA (9 data) 
 

 
(c) Interpolation (4 data)  
Figure 9.6 Mean contaminant concentration 

as function of YS and YE 

 
(a) Interpolation (9 data) 
 

 
(b) GLM/ANOVA (9 data) 
 

 
(c) Interpolation (4 data)  

Figure 9.7 CRE as function of YS and YE 
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(a) Interpolation (9 data) 
 

 
(b) GLM/ANOVA (9 data) 
 

 
(c) Interpolation (4 data)  
Figure 9.8 PMV for patient as function of YS 

and YE 

 
(a) Interpolation (9 data) 
 

 
(b) GLM/ANOVA (9 data) 
 

 
(c) Interpolation (4 data)  

Figure 9.9 PMV for staff member 1 as 
function of YS and YE 
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(a) Interpolation (9 data) 
 

 
(b) GLM/ANOVA (9 data) 
 

 
(c) Interpolation (4 data)  

Figure 9.10 PMV for staff member 2 as 
function of YS and YE 

 
(a) Interpolation (9 data) 
 

 
(b) GLM/ANOVA (9 data) 
 

 
(c) Interpolation (4 data)  

Figure 9.11 PMV for staff member 3 as 
function of YS and YE 
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9.4 Conclusions 

This chapter presents a thorough analysis of air velocity, pressure, temperature, 

humidity distributions, and contaminant transport in an air-conditioned hospital operating 

room using a 3-D computational model. Human thermal comfort using simple assessment 

and PMV model as well as contaminant removal effectiveness are studied. It is found that 

air flow pattern significantly affects the performance on both contaminant removal and 

thermal comfort. For simple assessment on thermal comfort, the mean air speed and 

mean relative humidity can be taken over the entire space or only over the breathing zone 

without much difference. However, mean temperature can be varied significantly over 

different air zones. It is best to take mean temperature over occupied zone or breathing 

zone since the condition is closer to the occupants. Simple assessment based on mean 

temperature shows that the horizontal location of the supply grilles has significant effects 

of thermal comfort while that of the exhaust grilles does not. The GLM approach for the 

PMV and contaminant concentration distribution characteristics confirms strong effects 

of the horizontal location of the supply grilles on thermal comfort and on contaminant 

removal. A comparison between different response models shows that GLM can be used 

to replace the interpolation for three-level experimental design in most cases and that the 

interpolation for two-level experimental data shows reasonably good agreement to other 

models when there are almost only linear effects. For overall design of the room, it can be 

concluded that the closer the supply grilles to the center of the room, the better the 

performance is on both contaminant removal and thermal comfort. 
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Chapter 10 A Guideline on Using CFD for Indoor Space Modeling 

10.1 Introduction 

The use of computational fluid dynamics (CFD) tools in indoor environment 

design has been increasing in recent years. Although modeling software is widely 

available, successful application of CFD method in indoor environmental modeling is 

still challenging (ASHRAE, 2005). CFD modeling and simulation for indoor spaces 

require fundamental and advanced backgrounds in fluid mechanics and heat and mass 

transfer as well as computational expertise. In some cases, CFD approach is not 

applicable because of time and computing resources required become impractical due to a 

large number of elements in the computational mesh. The American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) recently announced a request 

for proposal on optimizing the trade off between grid resolution and simulation accuracy 

(ASHRAE, 2007). The most updated version of the Fundamentals Handbook by 

ASHRAE (2005) provides an introductory fundamental guideline on the CFD method for 

indoor environmental modeling. It gives an overview to CFD method for HVAC 

engineers who attempt to use CFD modeling for their works. A more complete guideline 

is necessary to provide the HVAC engineers a systematic and effective procedure to set 

up a CFD model and run simulations on it.  

Based on the work presented in Chapters 7, 8, and 9, this author proposes a 

guideline on several practical aspects related to the application of CFD in indoor 
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environmental modeling, as a complementary part to the general guideline given in the 

Fundamentals Handbook by ASHRAE (2005).This guideline was developed with a 

practical point of view for HVAC engineers. Only a basic set up for modeling and 

simulation is presented with brief notes on advanced considerations. Although the 

commercial packages FIDAP (Fluent, 2005) for both creating and meshing the geometry 

and simulation, and GAMBIT (Fluent, 2006) for creating and meshing the geometry 

only, especially useful for handling complex geometries, were employed for 

demonstration purposes, the methodology can be applied with any CFD/mesh generation 

software provided that they have basic features for a CFD task. 

Most indoor spaces are 3-D by nature, that is, all three dimensions have their own 

complexity in both geometry and physics. Therefore, using 3-D models to describe 

indoor spaces is the most natural and reasonable choice. For a highly 3-D space, which is 

usually the case, the use of 2-D models may lead to unrealistic solutions. However, the 

use of 2-D models has its own advantages and needs to take into consideration. In some 

cases where the complexity in one direction is simpler than that in the other two 

directions, a 2-D model can be used to approximate a 3-D space of interest and gives 

good results. Although a 2-D model cannot describe the transport phenomena accurately, 

2-D modeling and simulation can provide useful information and ideas to 3-D modeling 

and simulation while taking less time, computing resources, and working efforts. Useful 

information and ideas may include the set up of the model, the order or range of the 

solution, even some insightful of the physics of the problem, etc. Therefore, it is 

recommended that simplified 2-D modeling and simulation should be performed before 

one proceeds to work on more realistic 3-D modeling and simulation. In most cases, 
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creating the geometry and meshing of a 2-D model can be extended to that of a 3-D 

model for the same physical problem. A 2-D model can also be used to test if a 

mathematical model (governing equations and boundary conditions) as well as its 

associated numerical values (physical properties, prescribed boundary quantities, etc.) are 

set up properly before applying for a time consuming 3-D simulation. 

The basic steps in CFD modeling and simulation (adapted from ASHRAE, 2005) 

are as follows: 

• Creating the geometry and meshing 

• Specifying physics settings 

• Solving the model 

• Postprocessing and visualization 

The following subsections present the technical aspects of these steps. 

10.2 Creating the Geometry and Meshing 

The first step in developing a computational model is creating the geometry and 

meshing. A real physical problem is usually complicated in many aspects including its 

geometry. Sometimes, a space of interest has no clear boundaries so that imaginary sides 

and hypothetical boundary conditions have to be made up to isolate the space of interest 

from the surroundings to form a geometry that can be modeled. Fortunately, most indoor 

spaces such as rooms are closed spaces confined by solid sides (walls, closed doors, etc.). 

Therefore, it is a natural approach to model the geometry of an indoor space as it is, with 

reasonable simplifications. Once a space of interest is determined, further considerations 

are required to try to reduce the size of the computational domain. The symmetry of both 

geometry and boundary conditions are often used for this purpose: it is possible to model 
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only a half or a quarter of the space of interest if it has one or two perpendicular planes of 

symmetry. This type of symmetry consideration can be found in the problems presented 

in Chapter 5 (3-D model of storage tank for liquid hydrogen) and Chapter 9 (3-D model 

of operating room). Another type of symmetry consideration is for the long and repetitive 

spaces, such as the corridor or the hallway. In such cases, a volume section can represent 

the entire space by repeating itself and put them sequentially. This type of symmetry can 

be found in the problem presented in Chapter 7 (3-D model of refrigerated warehouse). It 

is important to make sure that the symmetry is satisfied not only for the geometry but also 

for the boundary conditions. The resize of a geometry model from the whole to a fraction 

of the space of interest can significantly help saving time and computing resources for 

modeling and simulation, especially for 3-D problems. 

Meshing is the process of discretizing the geometry that models the physical 

domain of interest into a large number of elements. The accuracy and cost-effectiveness 

of the numerical solution for the modeled physical problem is highly dependent on the 

mesh. This task is tedious, difficult and time-consuming. It may take the major part in the 

data-preparation stage of an analysis which can consume up to 80% or more of the labor-

hours required (FIDAP Documentation, Fluent, 2005). Therefore, a methodology that 

allows the development of an effective approach to meshing is necessary. 

A computational mesh is composed of many small elements. In CFD and 

computational mechanics in general, there are a few simple shapes of element widely 

used: triangles and quadrilaterals for 2-D problems, tetrahedrons (4-sided triangular-

based shapes) and hexahedrons (6-sided box shapes) for 3-D problems. There are also 

wedges (triangular prisms) and rectangular-based pyramids sometimes used to transition 
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in hybrid 3-D mesh. A mesh of elements can be classified as structured (that is, having 

consistent geometry regularity and families of grid lines in one direction do not cross 

each other, ASHRAE, 2005) or unstructured. This guideline presents an approach to the 

development of specifically structured quadrilateral for 2-D and hexahedral meshes and 

3-D problems. 

Most indoor spaces are box shapes. Therefore, a meshing strategy that aims to fill 

the space of interest with box-shaped elements (rectangular parallelepipeds or cuboids) is 

natural. However, two issues need to be taken into account for a fluid flow and heat and 

mass transfer problem. First, layers of structured and fine enough mesh are needed on all 

fluid-solid interfaces, such as the walls, the ceiling, and the floor of the indoor space and 

the surfaces of the objects within the space such as people, furniture, equipments, etc., to 

capture possibly high gradients of the transport phenomena there. Second, the presence of 

the mentioned objects disrupts the box shape of the space. This makes it much difficult to 

generate a mesh, unlike meshing of an empty space. In the case that these objects can be 

modeled as box shapes that have the same principal directions as the whole space, the 

space can be divided into many box-shaped sub-volumes accommodating the 

(rectangular) surfaces of the objects. Each sub-volume then can be meshed with 

structured box-shaped elements as straightforward as meshing a box-shaped empty space. 

This method is intuitively natural and is a common practice for meshing such box-like 

spaces (or similarly rectangular-like spaces in 2-D problems). One disadvantage of this 

approach is that the fine mesh attached on a surface of an object (that represents a fluid-

solid interface) usually extends into the mesh of the adjacent sub-volumes (that models a 

part of the bulk fluid) where such fine mesh is not required. This leads to an unnecessary 
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increase in the number of elements in the mesh. For some cases, the objects may have 

complex geometries of great importance, which cannot be approximated as box shapes. 

In such case, the box-shaped-element mesh is very difficult to generate without an 

effective strategy. 

The meshing approach presented in this guideline is based on the encapsulation of 

the regions that require special meshing treatments such as the complex geometries and 

fluid-solid interfaces. The main global space excluding these local regions is subdivided 

further if necessary and meshed with high quality regular elements (squares or cubes). 

The subdivision of the local regions and the global space are set up such that their mesh 

generation can be automated conveniently using only basic meshing schemes available 

for most mesh generation software. Examples on modeling of a hospital operating room 

(Chapter 9) are presented to demonstrate the underlying methodology. The mesh 

development for the 2-D model is introduced first for its simplicity. Then that meshing 

approach is extended to the mesh development for the 3-D model. 

10.2.1 Mesh Development for 2-D Model 

Figure 10.1 shows the mesh generated for the 2-D model of the hospital operating 

room presented in Chapter 9. The rectangular objects within the space numbered 1 to 4 

represent the light, the lying patient, and the standing staff. Their areas are excluded from 

the computational domain and their sides are fluid-solid interfaces. The four sides of the 

rectangle that bound the computational domain represent the walls, the ceiling, and the 

floor of the room and they are fluid-solid interfaces. Those fluid-solid interfaces are the 

regions that require special meshing treatments. The two line segments on the two walls 

represent the inlet and outlet openings. They also need special meshing treatments for the 
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accommodation of finer mesh next to the solid edge shared with the wall, and of adequate 

number of elements on these short line segments without propagating the fine mesh to the 

adjacent space unnecessarily. The global space is planned to have a square-element mesh. 

Among the types of quadrilateral elements, square elements possess the perfect quality: 

zero skewness and unity aspect ratio. The side of the square element is selected to be the 

nominal size of the mesh Γ. 

Each object of interest is created in a local coordinate system. The objects can be 

moved from place to place by redefining the position of the origin of the local coordinate 

system to suit the needs of the simulation task. This is especially useful for a parametric 

study involving geometric positions. Figure 10.1a shows the objects of interest with their 

associated local coordinate systems. 

Encapsulation: the objects 1-4 are enclosed by slightly larger auxiliary rectangles 

as shown in Figure 10.1a. Each side of these auxiliary rectangles is calculated such that it 

is a natural number multiplied by the nominal size Γ. The band created by the difference 

between an auxiliary rectangle and the corresponding rectangular object is divided by 

four line segments, inclined at 45 degrees, into 4 trapezoids as shown in Figure 10.1a. 

These trapezoids can be meshed simply as shown in Figure 10.1b. It can be observed in 

Figure 10.1b that in each trapezoid the number of elements in one direction is dictated by 

the nominal mesh size Γ while in the other direction the height of the element layers from 

a fluid-solid interface increases inward the global space by a growth ratio α. Knowing the 

height of a trapezoid Η, the number of elements Ν and the growth ratio α in this direction 

can be calculated to ensure that the layers of elements at these boundaries are thin enough 

to be able to capture the possibly high gradients of solution there while not producing too 
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large aspect ratio, which may affect the computation accuracy. It can be observed that if 

the inside of the rectangular objects are included as part of the computational domain, it 

can be meshed easily without changing the mesh in the global space. The fluid-solid 

interfaces along the external boundaries of the space are treated similarly as shown in 

Figure 10.1a and partly in Figure 10.1c, except for the regions around the inlet and outlet 

openings that required further treatments. Figure 10.1c shows the expanded view of the 

region around the inlet opening. The encapsulation technique is used to control the mesh 

inside the local region around the inlet opening while ensuring that the outer border of 

this local region is matching to the nominal mesh size in the global space. 

As the results of the encapsulation, the global space has all its sides being a 

natural number of the nominal mesh size Γ and perpendicular to each other at shared 

vertices. This shape allows the global space to be able to accommodate a mesh of only 

square elements of nominal size Γ. Due to its complexity, the global space can be divided 

into several simpler shapes (in the sense that the particular software used by user can 

mesh automatically if the nominal size Γ is given) as shown in Figure 10.1a. In the case 

where more advanced meshing options are not available, the global space can always be 

divided into many rectangular sub-regions that can accommodate nominal size square-

element meshes. The option of meshing such rectangles automatically is standard to any 

mesh generation software or module in a CFD package. 

For the mesh presented in Figure 10.1, the following numerical values for the 

mesh parameters are used: Γ = 0.1 m, Η = 0.05 m, Ν = 3 and α = 1.5. The result mesh has 

1496 square elements in total 2570 quadrilateral elements (that is, 58% of the number of 

elements is of perfect quality). 
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(b) Expanded view: corners of objects (c) Expanded view: inlet opening 
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Figure 10.1 Geometry decomposition and meshing for 2-D model 
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10.2.2 Mesh Development for 3-D Model 

Figure 10.2 presents the geometry and its decomposition of the 3-D model for the 

study on an operating room (problem description is in Chapter 9). Figure 10.2a shows the 

geometry model of a half of the room due to its mirror symmetry. The objects within the 

operating room space (the light, the lying patient, and the standing surgical staff of three) 

are modeled as box shapes and created in their local coordinate systems. 

Encapsulation: auxiliary box shapes are created to enclose the box-shaped objects 

Figure 10.2a. These auxiliary box shapes are of slightly larger size than the objects. The 

outer surfaces of these box shapes are chosen such that each plane side can accommodate 

a regular mesh of square elements of nominal size Γ. The transition volume created by 

the difference between an auxiliary box shapes and the corresponding box-shaped object 

is decomposed into several rectangular based prismoids (hexahedrons with two parallel 

rectangular bases and four sides of either trapezoids or parallelograms) by cutting planes 

inclined at 45 degrees to principal planes. The external boundaries (ceiling, floor, and 

three walls) are treated similarly with the auxiliary box shapes slightly smaller than the 

box shape of the entire volume. The corresponding transition volume is also decomposed 

into several rectangular based prismoids. The inlet and outlet openings are rectangles on 

two opposite walls and needs to be treated specially in order to preserve the 2-D square-

element mesh on these two walls as well as the 3-D cubical-element mesh in the global 

space volume that the approach intends to generate. In 2-D model (Figure 10.1), the inlet 

and outlet openings are line segments and can be meshed easily as parts of the walls 

without having their own transition zones. The transition zones have the sole purpose of 

increasing the number of elements on these opening segments. However, in 3-D case, a 
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transition zone is needed for preserving the regular mesh nearby. For an opening, two 

auxiliary box shapes are needed: one has the opening area as a base like a box-shaped 

object, and the other one is slightly larger to enclose the former. The decomposition of 

the transition volume is similar to that in the other transition zone around the objects. The 

global space excluding these auxiliary box shapes needs further volume decomposition to 

make it easier to mesh using basic meshing schemes. Figure 10.2b shows the result of the 

decomposition with the component volumes disassembled. The transition sub-volumes 

are kept together to show their connectivity. 

Figure 10.3 shows the hexahedral-element mesh using encapsulation technique. 

The color represents the skewness quality of the elements. Blue means higher quality 

(low skewness) and red means lower quality (high skewness). In Figure 10.3a, the bulky 

blue volumes represent the global space meshed with cubical elements, which have zero 

skewness or perfect quality. Figure 10.3b shows the expanded views of the important 

transition zones around the inlet and outlet openings and the surgical site where locates 

the objects within the space. It gives an illustration of how different transition zones are 

meshed with the same approach and how their outer surfaces are developed to interface 

the cubical-element mesh in the global space. 

Figure 10.4 presents the hexahedral-element mesh for the entire volume of the 3-

D model as a combination of the layered refined element mesh in the transition zones at 

boundaries and the cubical-element mesh that occupies the global space. For controlling 

the mesh size, the same parameters as in 2-D case can be used. The mesh in Figure 10.4 

used Γ = 0.1 m, Η = 0.05 m, Ν = 3 and α = 1.5. It has 35140 cubical elements in total 

56290 hexahedral elements (that is, 62% number of elements of perfect quality). 
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(a) Full view 

 
(b) Sub-volumes from geometry decomposition  

Figure 10.2 Geometry decomposition for 3-D model using encapsulation technique 
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(a) Full view 
 
 

   
(b) Expanded local views (from left to right): inlet (supply), surgical site, outlet (exhaust) 

 
Figure 10.3 Hexahedral mesh for 3-D model using encapsulation technique 
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(a) Layered hexahedral-element mesh on fluid-solid interfaces 
 

 
(b) Cubical-element mesh in bulk fluid space  

Figure 10.4 Refined mesh in transition zones and regular mesh in global space 
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10.3 Specifying Physics Settings 

10.3.1 Governing Equations and Physical Properties 

In a many CFD packages commercially available, the governing equations and its 

formulation for a numerical method are predefined and the user only need to enter the 

relevant physical properties to the CFD software. However, since general-purpose CFD 

software may have many features beyond the needs of the user for a particular problem, 

he or she will have to specify which equations is necessary. For typical HVAC&R indoor 

spaces, the fluid of interest is air. Air borne species such as water vapor and contaminant 

gas (odor, carbon monoxide, etc.) is often of interest also. The air, as a carrier fluid in 

case there are some other species, is usually considered incompressible. To solve for the 

airflow, the continuity equation and the momentum equations (Navier-Stokes equations) 

are needed. The buoyancy effect is always significant in HVAC&R spaces; therefore, the 

buoyancy term should be included in the momentum equations. Since the buoyancy term 

introduces temperature into the momentum equation, the energy equation is also needed. 

In cases there are species of interest, the species transport equations are needed as well. 

For air mixture as an incompressible fluid, the governing equations for fluid flow and 

heat and mass transfer in an indoor space can be written as follows: 
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The governing equations show that the relevant physical properties are density ρ, 

dynamic viscosity μ, specific heat cp, thermal conductivity k, volumetric coefficient of 

thermal expansion β, and species diffusivity Dk. These are the input needed for a CFD 

simulation. 

Although the fluid (air) properties are often temperature dependent, and the 

governing equations in most CFD software can include that effect, indoor spaces are 

usually have a short range of temperature, in the order of a few degrees Celsius, in most 

part of the space, the constant properties assumption is reasonable. Therefore, it is 

advisable to use constant air properties for a basic set up of a CFD simulation. 

10.3.2 Turbulence Modeling 

Airflow in built environments is predominantly turbulent (ASHRAE, 2005). 

There are several approaches for modeling turbulent flows, such as Reynolds-Averaged 

Navier-Stokes (RANS), large eddy simulation (LES), and direct numerical simulation 

(DNS). However, although LES and DNS approaches have promising developments, 

their applications in indoor spaces are still limited due to computing resources required. 

RANS approaches are widely employed in modeling indoor spaces. There are several 

turbulence models to use with a RANS approach. The most intuitive approach is to adopt 

the mixing length hypotheses (ASHRAE, 2005). The mixing length turbulence model is 

also known as the zero-equation model, since it does not introduce any new partial 

differential equation into the system of governing equations. Other turbulence models 

may introduce one or two extra partial differential equations, thus increase the computing 

time and memory required significantly. Therefore, it is advisable to use the mixing 

length turbulence model for a basic set up of a CFD simulation. 
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10.3.3 Boundary Conditions 

A typical indoor space usually has solid walls and inlet and outlet openings. It is 

required to input boundary conditions for velocity, temperature, and species, if any. The 

following guidelines are for a basic set up of a CFD simulation. 

On the inlet openings: constant prescribed velocity, temperature, and species 

concentration(s):  

  0,00 ,, kkTT ωω === Vu  (10.5) 

On any fluid-solid interface, velocity is zero:  

  0=u  (10.6) 

On any fluid-solid interface where no mass transfer occurs, the species insulated 

condition can be used: 
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On any fluid-solid interface where no heat or mass transfer occurs, the thermal 

insulated condition can be used: 

  0=
∂
∂

n
T  (10.8) 

On the external boundaries of the computational domain, that is the fluid-solid 

interfaces at the solid walls of an indoor space, there are two typical cases. The thermal 

insulated condition (10.8) can be used if the indoor space has negligible exposure to 

outdoor environment, such as a room in the middle of a building. If the indoor space has 

significant exposure to outdoor environment, such as the case of refrigerated warehouses, 

the linear heat transfer model can be used: 
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On the fluid-solid interfaces at the boundaries of the objects within the indoor 

space, typical cases for temperature boundary conditions are prescribed temperature 

(human body) and prescribed heat flux (light, computers, equipments, human body, etc.): 

  0TT =  (10.10) 

  0q
n
Tk =

∂
∂  (10.11) 

On the fluid-solid interfaces at the boundaries of the objects within the indoor 

space, a typical case for species boundary conditions is species mass flux: 
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10.4 Solving the Model 

After two previous steps (the creating geometry and meshing, and the specifying 

physical properties and boundary conditions), the computational model is complete. This 

computational model is submitted to a solver module in a CFD package. The computing 

of the numerical solution for a CFD problem taken place in this step is quite transparent 

to the user. CFD software such as FIDAP allows the user to monitor the convergence rate 

of the computation. It is a good idea to check convergence rate from time to time to see if 

the simulation is converging as expected. 

After a simulation is done, the solution needs to be check in several ways. Simple 

postprocessing commands available in most CFD software can be used to visualize the 

airflow and temperature distribution to see if the phenomena are reasonable for a quality 

check. The macroscopic heat and mass balance (thermodynamics) can be used to check 
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the solution quantitatively. Checking the range of the solution is also useful for ruling out 

solution containing unrealistic numbers. 

For a grid independence study, the size of the mesh is changed systematically and 

simulations with different meshing size are submitted again. The novel meshing approach 

presented in the previous subsection allows the control of the mesh size through four 

parameters, which can be changed conveniently to generate a new mesh of different mesh 

size. After several runs for different meshes, representative values of a solution such as 

average speed or temperature can be plotted versus the mesh size to decide the proper 

mesh size where the solution shows mesh independence as the mesh size decreases. 

Once a good solution obtained, several modifications to the model can be applied. 

Temperature dependent properties, different turbulence models, and more complex and 

realistic boundary conditions can be tried. 

This step involves many tasks to ensure the completeness and accuracy of the 

CFD simulation. There are also extensive discussions on these issues and others in the 

Handbook by ASHRAE (2005). 

10.5 Postprocessing and Visualization 

Most CFD software has its own postprocessing module including solution graphic 

visualization. For a quantitative assessment a fluid flow and heat and mass transfer, the 

values of average and maximum and spatial standard deviation of a variable such as fluid 

temperature or speed are often used. 

The visualization of a numerical solution such as the airflow or the temperature 

distribution is important to examine and understand the transport phenomena. Based on 

the understanding of the phenomena in an existing simulation, design decisions can be 
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made and checked by using another simulation that implements the modified design 

ideas. For a CFD simulation, the visualization of any variable can help the overall 

understanding of a complex problem. Each variable needs a proper presentation for 

revealing its distribution structure as recommended in the followings: 

• Velocity: streamline plot combined with a slice plot for fluid speed 

• Pressure: isosurface plot  

• Temperature: slice plot or isosurface plot 

• Species concentration: slice plot 

Appendix I: provide MATLAB codes for 3-D visualization for the solution of the 

problem on the hospital operating room (Chapter 9). The resulting plots can be found in 

Chapter 9. These MATLAB codes can be modified to suit other 3-D problems. 
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Chapter 11 Conclusions 

11.1 Numerical Modeling and Simulation of Heat and Mass Transfer 

Seven problems involving heat and mass transfer in cryogenic liquid storage and 

HVAC&R applications have been studied and presented. Liquid hydrogen and air are the 

incompressible fluids considered in these problems. CFD modeling and simulation has 

proved to be a powerful tool for the investigation of heat and mass transfer phenomena in 

detail at microscopic (continuum) level for these fluid systems. The numerical solutions 

from the CFD simulations give the values of the primary transport variables such as 

velocity, pressure, temperature, and species concentrations at every nodal points over the 

entire computational domain that describes the space of interest. The distributions of 

secondary variables such as relative humidity and predicted mean vote (PMV) for 

thermal comfort assessment can be computed based on the distributions of the primary 

variables. The distributions of these variables can be graphically visualized in properly 

selected plots that can give more insightful understanding of the inside structures of these 

distributions thus the underlying transport phenomena. The visualization of a numerical 

solution combined with a parametric study can show how the fluid flow and heat and 

mass transfer change within the space of interest as one or many geometric parameters or 

boundary conditions change. On an engineering point of view, this knowledge is critical 

for both improving an existing system and designing a new system. In many cases where 

a single value is used to assess a system on a particular aspect, the average or maximum 
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value of a transport variable such as temperature, velocity, etc., can be employed. To 

assess the uniformity of a transport variable, the spatial standard deviation is a natural 

choice. These single values are the characteristics of a distribution and can be easily 

extracted from the numerical solution of the transport variable of interest. 

Four designs of ZBO storage tanks for liquid hydrogen has been proposed and 

investigated on the effects of the design parameters to the performance of the tanks, 

especially the anti-boiling-off characteristics represented by the maximum temperature 

within the fluid and the presence of high temperature regions where the “hot spot” of 

maximum temperature may be located. Geometric dimensions, forced flow velocity, 

cooling cycle, and other design parameters have been planned in parametric studies 

through steady state and transient analysis. 

For the first storage tank design where the fluid is cooled outside and is injected 

into the bulk fluid of the tank through nozzles on a nozzle head, the increase of flow rate 

yields the decrease of maximum temperature. The increase of supply flow rate obviously 

requires more power consumption and thus increases the cost of maintaining the system 

operation. Among the geometric parameters under study, the depth of the nozzle head has 

quite significant effect on maximum temperature and needs to be designated around the 

middle of the height of the tank for lower maximum temperature. 

For the second design that has a large number of lateral pump-nozzle units placed 

around a heat pipe, the results show that a smaller gap between the nozzle and the heat 

pipe yields better performance: lower maximum temperature, lower average temperature, 

and more uniform temperature distribution in the fluid. Other geometric parameters also 

have some less significant effects on the cooling performance of the system. The use of 
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an axisymmetric model for this problem saves time in modeling and simulation due to the 

reduction of the number of space dimensions as well as the number of elements compared 

to that of a 3-D model. However, this simplification may have its limitations, especially 

for not being able to describe accurately the fluid flow and heat transfer within the tank. 

The axisymmetric model assumes an infinite number of pump-nozzle units distributed 

around the heat pipe that form a solid body that blocks the flow from a nozzle to reach 

the opposite surface of the tank wall. In an actual system with a finite number of pump-

nozzle units, there are gaps between two adjacent units that allow the fluid discharged 

from a nozzle head to flow quite freely to the opposite region of the fluid within the tank 

after being in contact with and wrapping around the side of the heat pipe. Such flows 

cannot be described in an axisymmetric model. If they are important to the transport 

phenomena in the tank, the use of an axisymmetric model may cause unrealistic results. 

The simulation using the 3-D model with a heat pipe and a single lateral pump-

nozzle unit gives a detailed description of the distributions of velocity and temperature. It 

shows that the fluid flow going around the heat pipe is a major part of the total flow from 

a nozzle head and plays an important role in reducing the temperature in the fluid body. 

Both the axisymmetric model (infinite number of pump-nozzle units) and the 3-D model 

(single pump-nozzle unit) show an agreement that the maximum temperature in the fluid 

decreases as the fluid velocity (thus the flow rate) discharged from the nozzle increases. 

However, the observation that the maximum temperature for the axisymmetric model is 

higher than that for the 3-D model may possibly be unrealistic due to the limitation of the 

axisymmetric model. A future work on 3-D modeling of a storage tank with heat pipe and 

a finite number of pump-nozzle units can be performed to explore this matter further. 
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The transient analysis for the last design of ZBO cryogenic storage tank for liquid 

hydrogen with a heat pipe and an axial pump-nozzle unit shows that the cooling scheme 

under study can work for only about 2 weeks. This cooling scheme was planned that the 

pump switched on at a temperature threshold of 23 K, ran for 1 hour then stopped, then 

switched on when the maximum temperature reaches the threshold again. The detailed 

study on each stage of the proposed operation cycle provides useful ideas to the 

development of improved operation cycles for longer-term storage. 

For the refrigerated warehouse, cooling effectiveness and temperature uniformity 

are of most importance. The location of the cooling unit has been studied systematically 

resulting in applicable guidelines for finding an optimized location based on the design 

criteria that takes priority (maximum temperature, mean temperature, or temperature 

uniformity). The results show that the maximum temperature, the average temperature, 

and the spatial standard deviation of temperature distribution tend to decrease as the 

cooling unit moves closer the stored packages in the following directions, respectively: 

horizontal, vertical, and both horizontal and vertical. A compromised design can be 

selected where the cooling unit is located higher and in front of an array of stored 

packages, as close as possible to the top of the first stack. This location of the cooling 

unit is also required to follow another set of guidelines on warehouse operation, that is, 

minimum safety distance from the cooling unit to the stacks for loading and unloading 

activities. These guidelines are useful for the design of a refrigerated warehouse. For an 

existing warehouse, these guidelines can also be used to decide the height of the stacks 

and the location of the first stack. 
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For the problems involving indoor spaces, thermal comfort is of great importance. 

The use of the PMV-PPD model can be used for assessing thermal comfort in an HVAC 

space conveniently. In the modeling phase, it is better to generate a subdomain "body" 

wrapping around each occupant. This approach can serve two purposes. The first one is 

that the values of the parameters relevant to the computing of the PMV-PPD model can 

be taken closer to the body of the occupant and reflect better his or her comfort condition. 

The second one is that the mesh density inside this "body" subdomain can be closely 

controlled while the outer surfaces match the size of the regular element in the vast space 

outside. The PMV calculated based on the small space around the person is obviously 

more accurate than the PMV calculated based on the entire indoor space. The former can 

be higher than the latter a significant amount of about 0.5 on the ASHRAE thermal 

sensation scale (full scale from -3 to 3). This suggests that when an indoor space is 

analyzed for predicting its occupants' thermal comfort using CFD modeling, it is 

recommended that the PMV or other thermal sensation index be calculated based on the 

data acquired for the small spaces that enclose the model of the occupants rather than for 

the entire space. 

For the study on the hospital operating room, thermal comfort is also considered, 

but contaminant removal effectiveness of the ventilation systems is of most importance. 

The locations of the supply and exhaust openings play a critical role in controlling these 

characteristics of the system. The GLM approach was adopted to analyze the effects of 

the design parameters. This study has demonstrated the use of GLM to model the 

response of the system to the design parameters such as the horizontal locations of the 
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supply and exhaust openings. This approach can be used for the other design parameters 

as well. 

A guideline for the use of CFD method in indoor environmental modeling is 

presented in Chapter 10. A novel meshing approach based on the encapsulation technique 

is proposed give a systematic methodology for the meshing of indoor spaces and others in 

general. Technical aspects on other steps in CFD modeling are also presented, giving new 

CFD users, especially in HVAC&R, practical instructions to basic set up and run CFD 

simulations. 

The sizes of the models for the problems under study are on the order of meters: 

liquid hydrogen tank (3 m diameter × 2.6 m height), refrigerated warehouse (7 m length × 

4 m height × 2 m width), residential room (3.7 m length × 2.7 m height), operating room 

(6.1 m length × 3 m height × 2.15 m width). For the modeling of computational domains 

of this size, one of the difficulties is that the required computing resources (memory size, 

machine time, etc.) may exceed the capabilities of the available facilities. The modeling 

and simulation of the problems under study shows that the use of quadrilateral-element 

mesh for 2-D and axisymmetric models and hexahedral-element mesh for 3-D models 

with mesh density control along fluid-solid interfaces and at complex geometry boundary 

is effective. This approach gives good accuracy, fast convergence and less computing 

resources compared with the use of triangular elements in 2-D (or axisymmetric) and 

tetrahedral elements in 3-D. Through the problems under study, the practical approach for 

the quadrilateral-element and hexahedral-element mesh generation with applicable 

element size and arrangement has been demonstrated. This approach and its 

demonstrations provide a meshing strategy that helps the effective utilization of the 
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available features of any particular software that an user is working with to accomplish 

the meshing task. It is also promising to be further generalized and to lead to a fully 

automatic hexahedral meshing procedure for fluid flow and heat and mass transfer 

modeling problems. If this can be implemented, it will have a great impact on meshing in 

particular and on CFD modeling in general. 

11.2 Future Works 

All the problems presented in this work have been done as isolated spaces with 

prescribed boundary conditions to represent the external systems that have been cut off. 

This helps simplifying the study of the fluid flow and heat transfer phenomena in the 

space of interest and thus allows a thorough analysis in a reasonable time frame. Once the 

phenomena in an isolated space have been understood, it is necessary to perform further 

study on the mutual effects of the prescribed boundary conditions and the limited energy 

source that maintains them. A more realistic model can be developed with the inclusion 

of the external systems for better predictions on heat and mass transfer performance as 

well as more accurate estimation of power consumption. The integration of such model 

into a complete control system loops with signal feedback from sensor readings and other 

control elements and a study on dynamic response can be also useful and feasible. 

A 3-D model for cryogenic liquid storage tank with heat pipe and many pump-

nozzle units (2–9 units due to the finite space of the tank and the size of a unit) as well as 

a 3-D model for the air-conditioned room with ceiling fan are the two problems that need 

to carry out for more accurate solutions and more realistic understanding of the fluid flow 

and heat and mass transfer within the corresponding systems. 
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The study on the ZBO cryogenic storage tanks can be extended to similar systems 

for different cryogenic liquid such as liquid oxygen, liquid nitrogen, etc., under different 

conditions such as on the ground on earth or on the moon, on orbit or space stations, with 

other effects such as gravity or asymmetric and periodic heating. The study on the indoor 

spaces with HVAC&R applications provides fundamental ideas to similar studies such as 

thermal comfort and contaminant removal in a car or cooling a data center (a facility that 

houses server/computer systems, telecommunications, storage systems, etc.) 

For 3-D modeling, there are commercially available packages of mesh generation 

that have the options of generating tetrahedral-element meshes automatically. However, a 

tetrahedral-element mesh usually has a large number of elements and therefore requires 

enormous computing resources in the solving phase. For the same volume and the same 

element size, a hexahedral-element mesh has less number of elements. With less number 

of elements as well as nodal points, the 3-D hexahedral-element mesh saves computation 

time. A well-developed hexahedral-element mesh that reduces the skewness and aspect 

ratio of the hexahedral elements can also improve the accuracy of the numerical solution. 

The disadvantage of the generation of hexahedral-element mesh is that at this time, even 

with the aid of software, it can only be performed manually or partly automatically, and 

thus, very time consuming. Therefore, a hexahedral meshing strategy is very useful for 

saving meshing time which usually a major part in preprocessing time. 

The meshing approach for some 3-D problems presented in this work (liquid 

hydrogen tank in Chapter 5, refrigerated warehouse in Chapter 7, operating room in 

Chapter 9, and further explanation for a guideline in Chapter 10) can be summarized as 

follows: 
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• First, any irregular boundary is enclosed in and isolated from the main space 

by a box shape of slightly larger size such that leaving the large main space 

capable of being filled by cubical elements of a predetermined nominal mesh 

size. 

• Then in each enclosing box, a few layers of finer elements are assigned a long 

the boundaries of complex geometry if needed (such as fluid-solid interfaces). 

• The rest of the enclosing box is filled with hexahedral elements (most likely in 

irregular shapes) such that the outer surface of the enclosing box match the 

cube-shaped element mesh in the main space. 

Based on that meshing approach, the development of a fully automatically 3-D 

hexahedral-element meshing program can be feasible. 
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Appendix A: FIDAP Subroutine for Computation of Relative Humidity 

/* 
 *      Copyright Fluent Inc. 
 *      All Rights Reserved 
 */ 
C $Id: fidap_user.F,v 1.24 2002/11/01 20:43:16 devuser Exp $  
C 
C                     FIDAP User Subroutine Templates 
C                           Version 8.7.0 
C 
C Modified by Son Ho, University of South Florida 
C for computation of relative humidity 
C based on temperature (T), pressure (P), 
C and water vapor concentration (SPECIES 1) 
C 
      SUBROUTINE USRFN (FUNC, XYZ, UF, T, TRB, SPEC, NSPEC, P, DENS,  
     1                  NUMNP, NELEM, NDFCD, NDFVL, IPR, TIME, 
     2                  nxyz, mtpar, conmt, mtprp, nlpar, prop,  
     3                  mxmpar, mxmcon, mxmlab, mxepar, 
     4                  ia, WK, MFIRST, MTOT,IERR,DISP) 
C 
#include "IMPLCT.COM" 
#include "TAPES.COM" 
#include "NUMBRS.COM" 
      DIMENSION FUNC(NUMNP), prop(*), WK(*), ia(*), dens(numnp) 
      DIMENSION TRB(NUMNP,*), P(NUMNP), UF(NDFVL,NUMNP), T(NUMNP) 
      DIMENSION SPEC(NUMNP,*), XYZ(NUMNP,ndfcd), nxyz(numnp) 
      dimension mtpar(mxmpar,*), conmt(mxmcon,*) 
      dimension mtprp(mxmlab,*), nlpar(mxepar,*) 
      dimension DISP(NUMNP,*) 
      integer indspec(15) 
      data indspec /1,2,3,4,5,6,7,8,9,10,11,12,13,14,15/ 
C 
      C1 = -5.8002206E3 
      C2 = 1.3914993 
      C3 = -4.8640239E-2 
      C4 = 4.1764768E-5 
      C5 = -1.4452093E-8 
      C6 = 6.5459673 
 
      DO 100 N=1,NUMNP 
         TK = 273.15 + T(N) 
         PA = 101325. + P(N) 
         S1 = SPEC(N,1) 
         W  = S1/(1-S1) 
         Pw = PA*W/(0.62198 + W) 
         Pws= EXP(C1/TK +C2 +C3*TK +C4*TK**2 + C5*TK**3 + C6*LOG(TK)) 
         FUNC(N) = Pw/Pws 
 
  100 CONTINUE 
 
      RETURN 
      END 
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Appendix B: FIDAP Preprocessing Input for Chapter 3 

B.1 Geometry and Meshing: FIDAP Commands 

/ FIDAP Input File 
/ GEOMETRY and MESHING 
/ PROJECT: Cryogenic LH2 Tank with Injection Nozzles 
/ Axisymmetric model, SI units 
 
/ $D: diameter of inlet tube 
/ $H: depth of nozzle head 
/ $L: radius of nozzle head 
$D = 0.15 
$H = 1.3 
$L = 1.0 
 
/ $Z: multiplication factor for meshes of different element size 
/ $BG: growth rate of element layers at boundary edges 
/ $BL: number of layers of structured mesh at boundary edges 
/ For mesh independence study: $Z = 16, 12, 8, 4, 3, 2, 1.5, 1, 0.75 
/ For large $Z, if the automatic paved meshing fails, use $BL=1 
/ For $Z < 1, if the automatic paved meshing fails, omit curve #4 in 
/ section "ADD BOUNDARY EDGE" using a slash (/) 
$Z = 1 
$BG = 1.25 
$BL = 3 
 
/ $S1, $S2, and $S3: nominal sizes of 3 groups of elements 
/ Set $S1 = 0.1205 for $L = 0.9 or 1.3. 
/ Set $S1 = 0.12 otherwise 
$S1 = 0.012*$Z 
$S2 = 0.01*$Z 
$S3 = 0.004*$Z 
 
TITLE 
LH2 tank w/ displacement cooling nozzle system 
 
// FI-GEN 
FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, MEDG = 1, 
MLOO = 1, 
MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL = 1, COOR = 1 ) 
 
$A = 1.5 
$B = 0.65 
$C = 1.3 
$E = $D/2 
$F = $E*SQRT(2) 
$K = SQRT($A^2-$F^2)*$B/$A 
$G = 0.05 
$M = 0.01 
$N = 0.02 
$P = 0.02 
$Q = ($L-$M-$N-$P)/2 

 



www.manaraa.com

Appendix B (Continued) 

 214

// DEFINE COORDINATE SYSTEMS 
COORDINATE( ADD, ROTATION, SYSTEM = 2 ) 
$B 0 0 2 180 
COORDINATE( ADD, ROTATION, SYSTEM = 3 ) 
($B+$C) 0 0 
COORDINATE( ADD, ROTATION, SYSTEM = 4 ) 
($H+$B-$K) 0 0 2 180 
 
// ADD POINTS 
 
/ 1-8: tank wall 
COORDINATE( SELECT, ID = 2 ) 
COORDINATE( ACTIVATE ) 
POINT( ADD, COOR ) 
0 0 
0 $A 
$B 0 
$B $A 
 
COORDINATE( SELECT, ID = 3 ) 
COORDINATE( ACTIVATE ) 
POINT( ADD, COOR ) 
0 0 
0 $A 
$B 0 
$B $A 
 
/ 9-20: inlet tube and nozzle head 
COORDINATE( SELECT, ID = 4 ) 
COORDINATE( ACTIVATE ) 
POINT( ADD, COOR ) 
0 0 
$G 0 
$H 0 
$H $E 
$H $F 
$G $E 
$G ($L-$Q-$P-$N/2) 
$G $L 
0 $L 
0 ($L-$P) 
0 ($M+$Q+$N) 
0 ($M+$Q) 
0 $M 
 
// ADD CURVES 
 
/ 1-3: ellipsoidal top, cylindrical wall, ellipsoidal bottom 
POINT( SELE, ID) 
1 3 
CURVE( ADD, ELLIPSE, ANG1 = 0, ANG2 = 90 ) 
 
POINT( SELE, ID) 
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2 
6 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
5 7 
CURVE( ADD, ELLIPSE, ANG1 = 0, ANG2 = 90 ) 
 
/ 4-9: centerline, inlet & outlet openings 
POINT( SELE, ID) 
7 
9 13 
CURVE( ADD, LINE ) 
 
CURVE( SELE, ID = 1 ) 
POINT( SELE, ID = 13 ) 
CURVE( SPLIT, KEEP ) 
 
CURVE( SELE, ID = 10 ) 
CURVE( DELETE ) 
 
/ 10-18: inlet tube & nozzle head 
POINT( SELE, ID) 
12 
14 
10 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
14 21 
9 
CURVE( ADD, LINE ) 
 
// ADD SURFACES 
 
POINT(SELECT, ID ) 
4 
8 
3 
7 
SURFACE( ADD, POINT, ROWW = 2, NOADDCURVES, INVISIBLE ) 
 
// ADD MESH EDGES 
 
$NL = 19 
DECLARE $LL[1:$NL] 
DECLARE $MM[1:$NL] 
 
$LL[1] = PI*(3*($A+$B)-SQRT(($A+3*$B)*(3*$A+$B)))/4 
$LL[2] = $C 
$LL[3] = $LL[1] 
$LL[4] = 2*$B+$C-$H 
$LL[5] = $G 
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$LL[6] = $H-$G 
$LL[7] = $E 
$LL[8] = $F-$E 
$LL[9] = $LL[1]-$F 
$LL[10] = $H-$G 
$LL[11] = $E 
$LL[13] = $Q+$P+$N/2 
$LL[12] = $L-$E-$LL[13] 
$LL[14] = $G 
$LL[15] = $P 
$LL[16] = $L-$M-$N-$P-$Q 
$LL[17] = $N 
$LL[18] = $Q 
$LL[19] = $M 
 
DO( $I = 1, $I .LE. $NL ) 
IF (($I.EQ.15).OR.($I.EQ.17).OR.($I.EQ.19)) 
$MM[$I] = 2*INT($LL[$I]/2/$S3+1.5) 
ELSE 
IF (($I.EQ.7).OR.($I.EQ.8).OR.($I.EQ.14)) 
$MM[$I] = 2*INT($LL[$I]/2/$S2+1.5) 
ELSE 
$MM[$I] = 2*INT($LL[$I]/2/$S1+1.5) 
ENDIF 
ENDIF 
ENDDO 
 
$MM[5] = $MM[14] 
$MM[11] = $MM[7] 
$MM[13] = $MM[15]+$MM[16]+$MM[17]/2 
$MM[12] = $MM[19]+$MM[18]+$MM[17]/2-$MM[11] 
 
// ADD MESH EDGES 
 
CURVE( SELECT, ID = 1 ) 
MEDGE( ADD, SUCC, INTE = $MM[1], RATI = 0, 2RAT = 0, PCEN = 0, 
INVISIBLE ) 
 
DO( $I = 2, $I .LE. $NL ) 
CURVE( SELECT, ID = $I ) 
IF (($I.EQ.15).OR.($I.EQ.17).OR.($I.EQ.19)) 
MEDGE( ADD, SUCC, INTE = $MM[$I], RATI = 0, 2RAT = 0, PCEN = 0 ) 
ELSE 
MEDGE( ADD, FRTL, INTE = $MM[$I], RATI = $S3, 2RAT = $S3, PCEN = 0 ) 
ENDIF 
ENDDO 
 
// ADD MESH LOOPS 
 
/ 1: inlet tube 
CURVE( SELECT, ID ) 
6 7 
10 11 
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MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 1, EDG3 = 1, EDG4 = 1 ) 
 
/ 2: nozzle head 
CURVE( SELECT, ID ) 
11 19 
5 
MLOOP( ADD, MAP, EDG1 = 3, EDG2 = 1, EDG3 = 5, EDG4 = 1 ) 
 
/ 3: tank space 
CURVE( SELECT, ID ) 
4 
3 
2 
9 
8 
10 
12 19 
MLOOP( ADD, PAVE ) 
 
// ADD MESH FACES 
 
$NML = LASTID( MLOOP_ID ) 
 
DO( $I = 1, $I .LE. $NML ) 
SURFACE( SELECT, ID = 1) 
MLOOP( SELECT, ID = $I) 
MFACE( ADD ) 
ENDDO 
 
// ADD BOUNDARY EDGE 
MFACE( SELECT, ID = 3 ) 
CURVE( SELECT, ID ) 
2 3 
4 
8 10 
12 19 
BEDGE( ADD, 1HEIGHT = $S3, GROWTH = $BG, LAYERS = $BL, INVISIBLE ) 
 
// GENERATE MESH 
 
MFACE( SELECT, ID ) 
1 2 
MFACE( MESH, MAP, ENTI = "fluid" ) 
MFACE( SELECT, ID = 3 ) 
MFACE( MESH, PAVE, ENTI = "fluid" ) 
 
// GENERATE EDGE MESH 
 
ELEMENT( SETD, EDGE, NODE = 2 ) 
 
MEDGE( SELECT, ID = 7 ) 
MEDGE( MESH, MAP, ENTI = "inlet" ) 
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MEDGE( SELECT, ID = 8 ) 
MEDGE( MESH, MAP, ENTI = "outlet" ) 
 
MEDGE( SELECT, ID ) 
9 
2 3 
MEDGE( MESH, MAP, ENTI = "tk_wall" ) 
 
MEDGE( SELECT, ID ) 
4 6 
MEDGE( MESH, MAP, ENTI = "tk_axis" ) 
 
MEDGE( SELECT, ID ) 
10 
12 14 
16 
18 
MEDGE( MESH, MAP, ENTI = "nz_wall" ) 
 
MEDGE( SELECT, ID ) 
15 19 2 
MEDGE( MESH, MAP, ENTI = "nozzles" ) 
 
MEDGE( SELECT, ID = 1 ) 
MEDGE( MESH, REMOVE ) 
MEDGE( SELECT, ID = 1 ) 
MEDGE( DELETE ) 
 
END 
 

 
B.2 Simulation Settings: FIDAP Commands 

/ FIDAP Input File 
/ SIMULATION SETTINGS 
/ PROJECT: Cryogenic LH2 Tank with Injection Nozzles 
/ Axisymmetric model, SI units 
/ 
$V0 = 0.01 
$F0 = 1.0 
$T0 = 18 
/ 
TITLE 
LH2 tank w/ displacement cooling nozzle system 
 
FIPREP 
/ 
/          MATERIAL PROPERTIES 
/ 
/ Properties of Liquid Hydrogen at Reference Temperature: Tref = 20K 
DENSITY( SET = "LH2", CONS = 71.1 ) 
VISCOSITY( SET = "LH2", CONS = 13.6E-6, MIXLENGTH ) 
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SPECIFICHEAT( SET = "LH2", CONS = 9.53E3 ) 
CONDUCTIVITY( SET = "LH2", CONS = 0.0984 ) 
/ 
/          CONTINUUM ENTITIES 
/ 
ENTITY( NAME = "fluid", FLUID, PROPERTY = "LH2" ) 
/ 
/          BOUNDARY ENTITIES 
/ 
ENTITY( NAME = "inlet", PLOT ) 
ENTITY( NAME = "outlet", PLOT ) 
ENTITY( NAME = "tk_axis", PLOT ) 
ENTITY( NAME = "tk_wall", WALL ) 
ENTITY( NAME = "nz_wall", WALL ) 
ENTITY( NAME = "nozzles", PLOT ) 
/ 
/          INITIAL AND BOUNDARY CONDITIONS 
ICNODE( TEMP, ALL, CONS = $T0 ) 
/ 
BCNODE( UY, ENTI = "tk_axis", ZERO ) 
BCNODE( VELO, ENTI = "tk_wall", ZERO ) 
BCNODE( VELO, ENTI = "nz_wall", ZERO ) 
BCNODE( VELO, ENTI = "inlet", X = $V0, Y = 0 ) 
/ 
BCFLUX( HEAT, ENTI = "tk_wall", CONS = $F0 ) 
BCNODE( TEMP, ENTI = "inlet", CONS = $T0 ) 
/ 
/          PROBLEM SETUP 
/ 
PROBLEM( AXI-, TURBULENT, NONLINEAR, ENERGY ) 
EXECUTION( NEWJOB ) 
DATAPRINT( NONE ) 
PRINTOUT( NONE ) 
/ 
/          SOLUTION PARAMETERS 
/ 
SOLUTION( S.S. = 64, VELCONV = 1E-4, RESCONV = 1E-4 ) 
PRESSURE( MIXED = 1E-8, DISCONTINUOUS ) 
OPTIONS( UPWINDING ) 
CLIPPING( MINIMUM ) 
0 0 0 0 $T0 
/ 
END 
/ 
CREATE( FISOLV ) 
RUN( FISOLV, BACK ) 
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Appendix C: FIDAP Preprocessing Input for Chapter 4 

C.1 Geometry and Meshing: FIDAP Commands 

/ FIDAP Input File 
/ GEOMETRY and MESHING 
/ PROJECT: Cryogenic LH2 Tank with Array of Pump-Nozzle Units 
/ Axisymmetric model, SI units 
/ 
/ $G: gap between heat pipe and nozzle face, 0.1, 0.2, 0.3 
/ $H: length of heat pipe, 1.0, 1.5, 2.0 
/ $P: distance from inlet opening to pump center, 0.25, 0.55, 0.85 
$G = 0.2 
$H = 1.5 
$P = 0.55 
/ 
TITLE 
LH2 tank w/ heat pipe & array of pump-nozzle units 
 
// FI-GEN 
FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, MEDG = 1, 
MLOO = 1, 
MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL = 1, COOR = 1 ) 
 
// DEFINE DIMENSIONS 
$A = 1.5 
$B = 0.65 
$C = 1.3 
$D = 0.2 
$E = 0.3 
$F = $D/2 
$K = SQRT($A^2-$F^2)*$B/$A 
$L = 0.3 
$M = 0.1 
$N = 0.1 
$O = 0.1 
$R = 0.1 
$S = SQRT($R^2-$O^2/4) 
$T = SQRT($R^2-$N^2/4) 
 
// DEFINE COORDINATE SYSTEMS 
COORDINATE( ADD, ROTATION, SYSTEM = 2 ) 
$B 0 0 2 180 
COORDINATE( ADD, ROTATION, SYSTEM = 3 ) 
($B+$C) 0 0 
COORDINATE( ADD, ROTATION, SYSTEM = 4 ) 
($H-$E+$M/2+$O/2) ($F+$G+$L) 0 1 180 2 180 
 
// ADD POINTS 
 
COORDINATE( SELECT, ID = 2 ) 
COORDINATE( ACTIVATE ) 
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POINT( ADD, COOR ) 
0 0 
0 $A 
$B 0 
$B $A 
 
COORDINATE( SELECT, ID = 3 ) 
COORDINATE( ACTIVATE ) 
POINT( ADD, COOR ) 
0 0 
0 $A 
$B 0 
$B $A 
 
COORDINATE( SELECT, ID = 1 ) 
COORDINATE( ACTIVATE ) 
POINT( ADD, COOR ) 
($H-$F) 0 
$H 0 
($H-$F) $F 
($H-$E) $F 
($B-$K) $F 
 
COORDINATE( SELECT, ID = 4 ) 
COORDINATE( ACTIVATE ) 
POINT( ADD, COOR ) 
0 0 
(-$O/2) ($L-$M) 
(-$O/2) $S 
$T (-$N/2) 
$P (-$N/2) 
$P ($N/2) 
$T ($N/2) 
($O/2) $S 
($O/2) ($L-$M) 
 
/ 23-28 
($O/2+$M/2) ($L-$M/2) 
($O/2+$M/2) $L 
(-$O/2-$M/2) $L 
(-$O/2-$M/2) ($L-$M/2) 
(-$O/2) ($L-$M/2) 
($O/2) ($L-$M/2) 
 
// ADD CURVES 
 
POINT( SELE, ID) 
1 3 
CURVE( ADD, ELLIPSE, ANG1 = 0, ANG2 = 90 ) 
 
POINT( SELE, ID) 
2 
6 
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CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
5 7 
CURVE( ADD, ELLIPSE, ANG1 = 0, ANG2 = 90 ) 
 
POINT( SELE, ID) 
7 
10 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
9 11 
CURVE( ADD, ARC, CENTER2POINTS, MINARC ) 
 
POINT( SELE, ID) 
11 13 
CURVE( ADD, LINE ) 
 
CURVE( SELE, ID = 1 ) 
POINT( SELE, ID = 13 ) 
CURVE( SPLIT, KEEP ) 
 
CURVE( SELE, ID = 9 ) 
CURVE( DELETE ) 
 
POINT( SELE, ID) 
15 16 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
14 
16 17 
CURVE( ADD, ARC, CENTER2POINTS, MAXARC ) 
 
POINT( SELE, ID) 
17 20 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
14 
20 21 
CURVE( ADD, ARC, CENTER2POINTS, MINARC ) 
 
POINT( SELE, ID) 
21 22 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
28 
22 23 
CURVE( ADD, ARC, CENTER2POINTS, MINARC ) 
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POINT( SELE, ID) 
23 26 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
27 
26 
15 
CURVE( ADD, ARC, CENTER2POINTS, MINARC ) 
 
// ADD SURFACES 
 
POINT(SELECT, ID ) 
4 
8 
3 
7 
SURFACE( ADD, POINT, ROWW = 2, NOADDCURVES, INVISIBLE ) 
 
// ADD MESH EDGES 
 
$NL = 20 
DECLARE $LL[1:$NL] 
DECLARE $MM[1:$NL] 
 
$LL[1] = PI*(3*($A+$B)-SQRT(($A+3*$B)*(3*$A+$B)))/4 
$LL[2] = $C 
$LL[3] = $LL[1] 
$LL[4] = 2*$B+$C-$H 
$LL[5] = PI*$F/2 
$LL[6] = $E-$F 
$LL[7] = $H-$E 
$LL[8] = $LL[1]-$F 
$LL[9] = $L-$M-$S 
$LL[10] = (3*180-2*ACOS($S/$R)-2*ACOS($T/$R))*DEG2RAD*$R/2 
$LL[11] = $P-$T 
$LL[12] = $N 
$LL[13] = $LL[11] 
$LL[14] = (180-2*ACOS($S/$R)-2*ACOS($T/$R))*DEG2RAD*$R/2 
$LL[15] = $LL[9] 
$LL[16] = PI*$M/4 
$LL[17] = $M/2 
$LL[18] = ($O+$M) 
$LL[19] = $LL[17] 
$LL[20] = $LL[16] 
 
$S1 = 0.02 
$S2 = 0.01000001 
 
DO( $I = 1, $I .LE. 8 ) 
$MM[$I] = 2*INT($LL[$I]/2/$S1+1.5) 
ENDDO 
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DO( $I = 5, $I .LE. 6 ) 
$MM[$I] = 2*INT($LL[$I]/2/$S2+1.5) 
ENDDO 
 
DO( $I = 9, $I .LE. $NL ) 
$MM[$I] = 2*INT($LL[$I]/2/$S2+1.5) 
ENDDO 
 
// ADD MESH EDGES 
 
CURVE( SELECT, ID = 1 ) 
MEDGE( ADD, SUCC, INTE = $MM[1], RATI = 0, 2RAT = 0, PCEN = 0, 
INVISIBLE ) 
 
DO( $I = 2, $I .LE. $NL ) 
CURVE( SELECT, ID = $I ) 
MEDGE( ADD, LSTF, INTE = $MM[$I], RATI = 2, 2RAT = 2, PCEN = 0 ) 
ENDDO 
 
// ADD MESH LOOPS 
 
/ 1: tank boundary 
CURVE( SELECT, ID ) 
2 8 
MLOOP( ADD, PAVE ) 
 
/ 2: pump-nozzle unit boundary 
CURVE( SELECT, ID ) 
9 24 
MLOOP( ADD, PAVE ) 
 
// ADD MESH FACES 
 
SURFACE( SELECT, ID = 1) 
MLOOP( SELECT, ID ) 
1 2 
MFACE( ADD ) 
 
// ADD BOUNDARY EDGE 
MFACE( SELECT, ID = 1 ) 
CURVE( SELECT, ID ) 
2 20 
BEDGE( ADD, 1HEIGHT = 0.005, GROWTH = 1.1, LAYERS = 3, INVISIBLE ) 
 
// GENERATE MESH 
 
MFACE( SELECT, ID = 1) 
MFACE( MESH, PAVE, ENTI = "fluid" ) 
 
// GENERATE EDGE MESH 
 
ELEMENT( SETD, EDGE, NODE = 2 ) 
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MEDGE( SELECT, ID ) 
2 3 
8 
MEDGE( MESH, MAP, ENTI = "tk_wall" ) 
 
MEDGE( SELECT, ID = 4 ) 
MEDGE( MESH, MAP, ENTI = "tk_symm" ) 
 
MEDGE( SELECT, ID ) 
5 6 
MEDGE( MESH, MAP, ENTI = "hp_evap" ) 
 
MEDGE( SELECT, ID = 7 ) 
MEDGE( MESH, MAP, ENTI = "hp_insu" ) 
 
MEDGE( SELECT, ID = 12 ) 
MEDGE( MESH, MAP, ENTI = "pp_inlet" ) 
 
MEDGE( SELECT, ID = 18 ) 
MEDGE( MESH, MAP, ENTI = "pp_outlet" ) 
 
MEDGE( SELECT, ID ) 
9 11 
13 17 
19 20 
MEDGE( MESH, MAP, ENTI = "pp_wall" ) 
 
MEDGE( SELECT, ID = 1 ) 
MEDGE( MESH, REMOVE ) 
MEDGE( SELECT, ID = 1 ) 
MEDGE( DELETE ) 
/ 
END 
 

 
C.2 Simulation Settings: FIDAP Commands 

/ FIDAP Input File 
/ SIMULATION SETTINGS 
/ PROJECT: Cryogenic LH2 Tank with Array of Pump-Nozzle Units 
/ Axisymmetric model, SI units 
/ 
/ 
$F0 = 1.0 
$T0 = 20 
/ 
$NS = 5 
$V0 = 0.05 
/ 
TITLE 
LH2 tank w/ heat pipe & array of pump-nozzle units 
/ 
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FIPREP 
/ 
/          MATERIAL PROPERTIES 
/ 
DENSITY( SET = "LH2", CONSTANT = 70.8 ) 
VISCOSITY( SET = "LH2", CONSTANT = 13.2E-6, MIXLENGTH ) 
CONDUCTIVITY( SET = "LH2", CONSTANT = 0.0989 ) 
SPECIFICHEAT( SET = "LH2", CONSTANT = 9.66E3 ) 
/ 
/          CONTINUUM ENTITIES 
/ 
ENTITY ( NAME = "fluid", FLUID, PROPERTY = "LH2" ) 
/ 
/          BOUNDARY ENTITIES 
/ 
ENTITY ( NAME = "tk_wall", WALL ) 
ENTITY ( NAME = "tk_symm", PLOT ) 
 
ENTITY ( NAME = "hp_evap", WALL ) 
ENTITY ( NAME = "hp_insu", WALL ) 
 
ENTITY ( NAME = "pp_wall", WALL ) 
ENTITY ( NAME = "pp_inlet", PLOT ) 
ENTITY ( NAME = "pp_outlet", PLOT ) 
/ 
/          DEFINE TIME (LOAD) FUNCTIONS 
/ 
TMFUNCTION ( SET = 1, LINEAR, ACOEF = 1, BCOEF = 0 ) 
/ 
/          INITIAL AND BOUNDARY CONDITIONS 
/ 
BCNODE( VELO, ZERO, ENTITY = "tk_wall" ) 
BCNODE( UY, ZERO, ENTITY = "tk_symm" ) 
 
BCNODE( VELO, ZERO, ENTITY = "hp_evap" ) 
BCNODE( VELO, ZERO, ENTITY = "hp_insu" ) 
 
BCNODE( VELO, ZERO, ENTITY = "pp_wall" ) 
BCNODE( UX, ZERO, ENTITY = "pp_outlet" ) 
BCNODE( UY, CONSTANT = -$V0, ENTITY = "pp_outlet" ) 
 
BCFLUX( HEAT, CONST = $F0, CURVE = 1, ENTITY = "tk_wall" ) 
BCNODE( TEMP, CONST = $T0, CURVE = 1, ENTITY = "hp_evap" ) 
/ 
/          PROBLEM SETUP 
/ 
PROBLEM( AXI-, TURBULENT, NONLINEAR, ENERGY ) 
EXECUTION( NEWJOB ) 
PRINTOUT( NONE ) 
DATAPRINT( NONE ) 
/ 
/          SOLUTION PARAMETERS 
/ 
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SOLUTION( S.S. = 64, VELCONV = 1.E-6, RESCONV = 1.E-6 ) 
PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 
INCREMENTAL( NLSTEPS = $NS, BDRY-CDTNS ) 
/ 
END 
/ 
CREATE( FISOLV ) 
RUN( FISOLV, BACK ) 
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Appendix D: GAMBIT/FIDAP Preprocessing Input for Chapter 5 

D.1 Geometry and Meshing: GAMBIT Commands 

/ GAMBIT Input File 
/ GEOMETRY and MESHING 
/ PROJECT: Cryogenic LH2 Tank with Lateral Pump-Nozzle Unit 
/ Three-dimensional (3-D) model, SI units 
/ 
/ CREATING THE GEOMETRY 
/ 
/ Tank: cylindrical body + spheroidal top and bottom 
/ 
vertex create coordinates 0 0 0 
vertex create coordinates 0 0 0.65 
vertex create coordinates 0 0 1.95 
vertex create coordinates 0 0 2.6 
vertex create coordinates 1.5 0 1.95 
vertex create coordinates 1.5 0 0.65 
edge create straight "vertex.1" "vertex.4" 
edge create straight "vertex.6" "vertex.5" 
edge create center "vertex.2" major "vertex.6" onedge "vertex.1" 
start 0 end \ 
  90 ellipse 
edge create center "vertex.3" major "vertex.5" onedge "vertex.4" 
start 0 end \ 
  90 ellipse 
face create wireframe "edge.1" "edge.2" "edge.3" "edge.4" real 
volume create revolve "face.1" dangle -180 vector 0 0 1 origin 0 0 0 
/ 
/ Heat pipe: cylindrical body + spherical tip 
/ 
coordinate create cartesian oldsystem "c_sys.1" offset 0 0 2.6 axis1 
"x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
coordinate activate "c_sys.2" 
volume create height 1.4 radius1 0.1 radius3 0.1 offset 0 0 -0.7 
zaxis frustum 
volume create radius 0.1 sphere 
volume move "volume.3" offset 0 0 -1.4 
volume unite volumes "volume.2" "volume.3" 
volume subtract "volume.1" volumes "volume.2" 
/ 
/ Pump-nozzle unit: sph. body + cyl. inlet tube + nozzle head 
/ 
coordinate create cartesian oldsystem "c_sys.2" offset -0.3 0 -1.3 
axis1 "x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
coordinate activate "c_sys.3" 
volume create height 0.05 radius1 0.1 radius3 0.1 offset -0.025 0 0 
xaxis frustum 
volume create radius1 0.05 radius2 0.05 xaxis torus 
volume move "volume.3" offset -0.05 0 0 
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volume create height 0.25 radius1 0.05 radius3 0.05 offset -0.125 0 0 
xaxis frustum 
volume unite volumes "volume.4" "volume.3" "volume.2" 
volume create radius 0.1 sphere 
volume move "volume.5" offset -0.3 0 0 
volume create height 0.8 radius1 0.05 radius3 0.05 offset 0 0 0.4 
zaxis frustum 
volume move "volume.6" offset -0.3 0 0 
volume unite volumes "volume.4" "volume.5" "volume.6" 
volume subtract "volume.1" volumes "volume.4" 
/ 
/ SUBDIVIDING THE VOLUME 
/ 
coordinate activate "c_sys.2" 
volume create width 0.3 depth 0.3 height 1.55 offset 0.15 0.15 -0.775 
brick 
volume move "volume.2" offset -0.15 -0.15 0 
face cmove "face.29" multiple 1 offset 0 0 0.15 
face cmove "face.35" multiple 1 offset 0 0 0.2 
volume split "volume.1" volumes "volume.2" connected 
volume split "volume.3" faces "face.36" connected 
volume split "volume.4" faces "face.35" connected 
face cmove "face.37" multiple 1 offset -0.3 0 0.1 
face cmove "face.37" multiple 1 offset -0.3 0 0.4 
edge split "edge.90" vertex "vertex.71" connected 
edge split "edge.88" vertex "vertex.72" connected 
edge split "edge.69" vertex "vertex.75" connected 
edge split "edge.67" vertex "vertex.76" connected 
edge create straight "vertex.70" "vertex.74" 
edge create straight "vertex.73" "vertex.77" 
face create wireframe "edge.100" "edge.109" "edge.104" "edge.110" 
real 
face create wireframe "edge.97" "edge.90" "edge.78" "edge.107" 
"edge.101" \ 
  "edge.109" real 
face create wireframe "edge.88" "edge.76" "edge.108" "edge.103" 
"edge.110" \ 
  "edge.99" real 
face split "face.48" connected keeptool face "face.53" 
face split "face.31" connected keeptool face "face.54" 
volume create stitch "face.59" "face.42" "face.31" "face.54" 
"face.55" \ 
  "face.53" "face.56" "face.57" real 
/ 
coordinate activate "c_sys.3" 
volume create width 0.3 depth 0.15 height 1.1 offset -0.15 -0.075 
0.55 brick 
volume move "volume.7" offset -0.15 0 -0.15 
volume unite volumes "volume.6" "volume.7" 
volume split "volume.1" volumes "volume.6" connected 
volume create width 0.4 depth 0.2 height 0.4 offset -0.2 -0.1 -0.2 
brick 
volume move "volume.8" offset -0.15 0 0.15 
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volume split "volume.7" volumes "volume.8" connected 
face cmove "face.67" multiple 1 offset 0 0 -0.15 
volume split "volume.7" faces "face.88" connected 
face cmove "face.39" multiple 1 offset -0.15 0 0 
volume split "volume.5" faces "face.94" connected 
volume create radius 0.1 sphere 
face cmove "face.82" multiple 1 offset 0.15 0 0 
edge create straight "vertex.136" "vertex.133" "vertex.131" 
"vertex.132" 
edge create straight "vertex.132" "vertex.136" 
face delete "face.101" lowertopology 
face create wireframe "edge.211" "edge.212" "edge.213" "edge.214" 
real 
face cmove "face.101" multiple 1 offset -0.05 0 0 
volume split "volume.10" faces "face.101" connected 
volume split "volume.10" faces "face.102" connected 
volume split "volume.14" volumes "volume.13" connected 
face cmove "face.107" multiple 1 offset 0 0 -0.15 
volume split "volume.14" faces "face.114" connected keeptool 
volume split "volume.13" faces "face.114" connected 
face cmove "face.92" multiple 1 offset 0.15 0 0 
/ 
coordinate create cartesian oldsystem "c_sys.3" offset -0.3 0 0.8 
axis1 "x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
coordinate activate "c_sys.4" 
volume create radius 0.05 sphere 
volume split "volume.11" volumes "volume.19" connected 
volume split "volume.19" faces "face.123" connected keeptool 
volume split "volume.11" faces "face.123" connected 
face cmove "face.81" multiple 1 offset 0.15 0 0 
face cmove "face.53" multiple 1 offset 0 0 0.15 
volume split "volume.8" faces "face.134" connected 
volume split "volume.23" faces "face.135" connected keeptool 
volume split "volume.8" faces "face.135" connected 
face cmove "face.78" multiple 1 offset 0 0 0.15 
volume split "volume.10" faces "face.154" connected 
vertex delete "vertex.3" "vertex.2" 
/ 
face create plane "vertex.77" "vertex.95" "vertex.195" 
face create plane "vertex.77" "vertex.189" "vertex.208" 
face create plane "vertex.77" "vertex.196" "vertex.208" 
face split "face.160" connected keeptool face "face.161" 
face delete "face.163" lowertopology 
face unite faces "face.161" "face.160" real 
face split "face.148" connected face "face.161" 
face split "face.148" connected face "face.160" 
face split "face.148" connected face "face.162" 
/ 
edge create straight "vertex.214" "vertex.77" 
edge create straight "vertex.215" "vertex.189" 
edge create straight "vertex.222" "vertex.196" 
edge create straight "vertex.219" "vertex.95" 
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face create wireframe "edge.344" "edge.350" "edge.298" "edge.351" 
real 
face create wireframe "edge.349" "edge.350" "edge.166" "edge.352" 
real 
face create wireframe "edge.346" "edge.350" "edge.104" "edge.353" 
real 
face unite faces "face.165" "face.166" real 
volume split "volume.24" faces "face.166" connected 
volume split "volume.24" faces "face.165" connected 
volume split "volume.27" faces "face.167" connected 
/ 
face create plane "vertex.110" "vertex.111" "vertex.195" 
face create plane "vertex.200" "vertex.110" "vertex.223" 
face split "face.171" connected keeptool face "face.172" 
face delete "face.171" lowertopology 
face split "face.172" connected keeptool face "face.173" 
face delete "face.175" lowertopology 
face unite faces "face.172" "face.173" real 
volume split "volume.25" faces "face.172" connected 
volume split "volume.25" faces "face.173" connected 
face create plane "vertex.110" "vertex.227" "vertex.199" 
volume split "volume.25" faces "face.178" connected 
/ 
face create plane "vertex.106" "vertex.196" "vertex.186" 
face create plane "vertex.106" "vertex.107" "vertex.195" 
face split "face.183" connected face "face.182" 
face delete "face.182" lowertopology 
volume split "volume.23" faces "face.183" connected 
face create plane "vertex.106" "vertex.241" "vertex.185" 
volume split "volume.23" faces "face.186" connected 
edge create straight "vertex.222" "vertex.241" 
face create wireframe "edge.413" "edge.402" "edge.306" "edge.357" 
real 
volume split "volume.23" faces "face.190" connected 
/ 
vertex cmove "vertex.61" multiple 1 offset 0 0 0.05 
edge split "edge.68" vertex "vertex.247" connected 
vertex cmove "vertex.65" multiple 1 offset 0 0 0.05 
edge split "edge.86" vertex "vertex.248" connected 
/ 
coordinate activate "c_sys.1" 
volume create width 1.6 depth 1.6 height 6 brick 
volume split "volume.1" volumes "volume.33" connected 
edge create straight "vertex.8" "vertex.5" 
edge create straight "vertex.7" "vertex.6" 
face create wireframe "edge.8" "edge.446" real 
face create wireframe "edge.6" "edge.447" real 
volume split "volume.1" faces "face.205" connected 
volume split "volume.35" faces "face.206" connected 
/ 
vertex cmove "vertex.94" multiple 1 offset -0.05 0 0 
edge split "edge.449" vertex "vertex.277" connected 
edge create straight "vertex.94" "vertex.277" 
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face split "face.203" virtual edges "edge.469" 
/ 
/ MESHING THE MODEL 
/ 
blayer create first 0.01 growth 1.2 total 0.022 rows 2 transition 1 
trows 0 
blayer attach "b_layer.1" face "face.134" "face.146" "face.165" 
"face.166" \ 
  "face.169" "face.27" "face.170" "face.167" "face.85" "face.147" 
"face.168" \ 
  edge "edge.313" "edge.348" "edge.344" "edge.349" "edge.345" 
"edge.39" \ 
  "edge.347" "edge.346" "edge.37" "edge.35" "edge.310" 
/ 
blayer create first 0.01 growth 1.2 total 0.022 rows 2 transition 1 
trows 0 
blayer attach "b_layer.2" face "face.140" "face.134" "face.152" 
"face.179" \ 
  "face.137" "face.177" "face.173" "face.175" "face.181" edge 
"edge.296" \ 
  "edge.313" "edge.319" "edge.392" "edge.384" "edge.29" "edge.385" 
"edge.383" \ 
  "edge.393" 
/ 
blayer create first 0.01 growth 1.2 total 0.022 rows 2 transition 1 
trows 0 
blayer attach "b_layer.3" face "face.168" "face.83" "face.79" 
"face.184" \ 
  "face.143" "face.189" "face.191" "face.185" "face.187" edge 
"edge.310" \ 
  "edge.25" "edge.405" "edge.293" "edge.294" "edge.412" "edge.417" 
"edge.404" \ 
  "edge.411" 
/ 
blayer create first 0.01 growth 1.2 total 0.022 rows 2 transition 1 
trows 0 
blayer attach "b_layer.4" face "face.149" edge "edge.316" 
/ 
blayer create first 0.01 growth 1.2 total 0.022 rows 2 transition 1 
trows 0 
blayer attach "b_layer.5" face "face.141" "face.77" "face.88" 
"face.130" \ 
  edge "edge.174" "edge.300" "edge.268" "edge.43" 
/ 
blayer create first 0.01 growth 1.2 total 0.022 rows 2 transition 1 
trows 0 
blayer attach "b_layer.6" \ 
  face "face.82" "face.145" "face.104" "face.104" "face.157" 
"face.157" \ 
  "face.111" "face.111" "face.159" "face.102" "face.120" "face.101" \ 
  edge "edge.312" "edge.167" "edge.28" "edge.164" "edge.329" 
"edge.330" \ 
  "edge.38" "edge.36" "edge.32" "edge.326" "edge.33" "edge.247" 
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/ 
blayer create first 0.01 growth 1.2 total 0.022 rows 2 transition 1 
trows 0 
blayer attach "b_layer.7" face "face.49" "face.99" "face.96" 
"face.47" \ 
  "face.94" "face.36" "face.40" edge "edge.10" "edge.204" "edge.12" \ 
  "edge.201" "edge.200" "edge.81" "edge.16" 
/ 
blayer create first 0.01 growth 1.2 total 0.022 rows 2 transition 1 
trows 0 
blayer attach "b_layer.8" face "face.44" "face.61" "face.30" 
"face.43" \ 
  "face.45" "face.46" edge "edge.15" "edge.72" "edge.74" "edge.73" 
"edge.75" \ 
  "edge.16" 
/ 
blayer create first 0.01 growth 2 total 0.03 rows 2 transition 1 
trows 0 
blayer attach "b_layer.9" face "face.210" "face.209" "face.211" \ 
  "face.202" "face.205" "face.71" edge "edge.442" \ 
  "edge.444" "edge.443" "edge.441" "edge.8" "edge.4" 
/ 
blayer create first 0.01 growth 2 total 0.03 rows 2 transition 1 
trows 0 
blayer attach "b_layer.10" face "face.212" "face.213" \ 
  "face.196" "face.208" "face.215" "face.214" edge \ 
  "edge.435" "edge.434" "edge.436" "edge.3" "edge.6" "edge.5" 
/ 
blayer create first 0.01 growth 2 total 0.03 rows 2 transition 1 
trows 0 
blayer attach "b_layer.11" face "v_face.218" "v_face.219" edge 
"edge.71" \ 
  "edge.445" 
/ 
face modify "face.146" side "vertex.196" 
face modify "face.134" side "vertex.189" 
face modify "face.85" side "vertex.95" 
face modify "face.164" end "vertex.214" 
face modify "face.82" end "vertex.196" 
face modify "face.141" end "vertex.189" 
face modify "face.170" end "vertex.33" 
face modify "face.85" end "vertex.30" 
face modify "face.168" end "vertex.24" 
face modify "face.82" side "vertex.77" 
/ 
edge mesh "edge.344" "edge.346" "edge.349" successive ratio1 1 
intervals 3 
edge mesh "edge.348" "edge.313" successive ratio1 1 intervals 3 
edge mesh "edge.345" "edge.347" "edge.37" "edge.310" successive 
ratio1 1 \ 
  intervals 4 
edge mesh "edge.39" "edge.35" successive ratio1 1 intervals 6 
edge mesh "edge.174" "edge.312" successive ratio1 1 intervals 6 
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edge mesh "edge.104" "edge.298" "edge.166" "edge.307" successive \ 
  ratio1 1 intervals 3 
edge mesh "edge.169" "edge.311" successive ratio1 1 intervals 4 
edge mesh "edge.308" successive ratio1 1 intervals 4 
/ 
face modify "face.177" end "vertex.32" 
face modify "face.77" side "vertex.110" 
face modify "face.180" end "vertex.227" 
face modify "face.169" end "vertex.188" 
face modify "face.141" side "vertex.77" 
/ 
edge mesh "edge.297" "edge.42" "edge.171" successive ratio1 1 
intervals 4 
edge mesh "edge.172" "edge.173" "edge.168" "edge.165" "edge.295" 
"edge.317" \ 
  "edge.318" successive ratio1 1 intervals 3 
edge mesh "edge.300" "edge.296" successive ratio1 1 intervals 6 
edge mesh "edge.299" "edge.176" "edge.309" "edge.170" "edge.175" 
successive \ 
  ratio1 1 intervals 4 
edge mesh "edge.29" successive ratio1 1 intervals 4 
edge mesh "edge.383" "edge.319" "edge.393" successive ratio1 1 
intervals 3 
edge mesh "edge.385" "edge.384" "edge.392" successive ratio1 1 
intervals 3 
/ 
volume mesh "volume.29" map 
volume mesh "volume.30" map 
volume mesh "volume.25" map 
volume mesh "volume.24" map 
volume mesh "volume.28" map 
volume mesh "volume.27" map 
/ 
face modify "face.168" end "vertex.24" 
face modify "face.79" end "vertex.28" 
face modify "face.145" side "vertex.106" 
face modify "face.192" end "vertex.241" 
face modify "face.149" side "vertex.94" 
/ 
edge mesh "edge.167" "edge.25" successive ratio1 1 intervals 6 
edge mesh "edge.161" "edge.306" "edge.307" "edge.160" "edge.291" 
"edge.290" \ 
  "edge.305" successive ratio1 1 intervals 3 
edge mesh "edge.404" "edge.417" "edge.411" successive ratio1 1 
intervals 3 
edge mesh "edge.315" "edge.143" "edge.289" "edge.314" "edge.122" 
successive \ 
  ratio1 1 intervals 3 
edge mesh "edge.316" successive ratio1 1 intervals 6 
/ 
volume mesh "volume.23" map 
volume mesh "volume.32" "volume.31" map 
volume mesh "volume.24" map 
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volume mesh "volume.28" map 
volume mesh "volume.30" map 
volume mesh "volume.8" cooper source "face.139" "face.53" "face.150" 
\ 
  "face.151" 
/ 
face modify "face.102" side "vertex.145" 
face modify "face.102" end "vertex.206" 
face modify "face.157" end "vertex.198" 
face modify "face.157" side "vertex.196" 
face modify "face.104" side "vertex.107" 
face modify "face.159" side "vertex.147" 
face modify "face.111" side "vertex.95" 
/ 
edge mesh "edge.329" successive ratio1 1 intervals 6 
edge mesh "edge.28" successive ratio1 1 intervals 6 
edge mesh "edge.228" "edge.327" "edge.162" successive ratio1 1 
intervals 2 
/ 
volume mesh "volume.10" cooper source "face.111" "face.157" 
volume mesh "volume.26" cooper source "face.104" "face.157" 
volume mesh "volume.23" "volume.28" map 
/ 
edge mesh "edge.33" "edge.247" successive ratio1 1 intervals 6 
/ 
face modify "face.159" end "vertex.147" 
face modify "face.102" end "vertex.145" 
/ 
volume mesh "volume.15" cooper source "face.102" "face.101" 
"face.159" \ 
  "face.120" 
/ 
edge mesh "edge.268" "edge.43" successive ratio1 1 intervals 6 
edge mesh "edge.273" "edge.263" "edge.272" successive ratio1 1 
intervals 6 
edge mesh "edge.274" "edge.187" "edge.126" "edge.278" "edge.131" 
"edge.147" \ 
  "edge.279" "edge.276" "edge.190" successive ratio1 1 intervals 3 
edge mesh "edge.280" "edge.129" "edge.130" "edge.125" "edge.186" 
"edge.145" \ 
  "edge.185" "edge.276" "edge.279" "edge.147" "edge.131" "edge.278" \ 
  "edge.126" "edge.187" "edge.274" "edge.190" successive ratio1 1 
intervals 3 
edge mesh "edge.277" "edge.275" "edge.188" "edge.189" successive 
ratio1 1 \ 
  intervals 4 
/ 
volume mesh "volume.7" cooper source "face.88" "face.130" "face.77" \ 
  "face.141" size 0.07 
/ 
face modify "face.131" side "vertex.97" 
face modify "face.123" side "vertex.175" 
face modify "face.88" side "vertex.119" 
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/ 
volume mesh "volume.11" cooper source "face.129" "face.133" "face.91" 
\ 
  "face.93" 
/ 
face modify "face.125" side "vertex.96" 
face modify "face.130" side "vertex.118" 
/ 
volume mesh "volume.22" cooper source "face.124" "face.92" "face.132" 
\ 
  "face.67" 
/ 
edge mesh "edge.271" "edge.270" "edge.269" "edge.44" successive 
ratio1 1 intervals 4 
/ 
volume mesh "volume.19" "volume.21" tetprimitive 
/ 
edge mesh "edge.237" "edge.253" "edge.255" successive ratio1 1 
intervals 6 
edge mesh "edge.249" "edge.248" "edge.78" "edge.76" successive ratio1 
1 \ 
  intervals 2 
edge mesh "edge.254" successive ratio1 1 intervals 3 
/ 
face modify "face.116" side "vertex.71" 
face modify "face.101" side "vertex.141" 
face modify "face.115" side "vertex.158" 
face modify "face.113" side "vertex.75" 
face modify "face.120" side "vertex.143" 
/ 
volume mesh "volume.14" cooper source "face.117" "face.105" 
"face.118" \ 
  "face.59" "face.103" 
volume mesh "volume.17" cooper source "face.100" "face.107" "face.42" 
\ 
  "face.31" "face.119" 
/ 
edge mesh "edge.257" "edge.258" "edge.256" "edge.34" successive 
ratio1 1 \ 
  intervals 4 
/ 
volume mesh "volume.13" "volume.18" tetprimitive 
/ 
edge mesh "edge.10" "edge.204" "edge.12" "edge.201" "edge.200" 
successive \ 
  ratio1 1 intervals 6 
edge mesh "edge.93" "edge.91" "edge.89" "edge.45" "edge.65" "edge.70" 
\ 
  "edge.197" "edge.196" "edge.199" "edge.202" "edge.195" "edge.66" 
"edge.46" \ 
  successive ratio1 1 intervals 3 
edge mesh "edge.105" successive ratio1 1 intervals 2 
/ 
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face modify "face.47" side "vertex.55" 
face modify "face.49" side "vertex.67" 
face modify "face.94" side "vertex.126" 
face modify "face.96" side "vertex.54" 
face modify "face.99" side "vertex.66" 
/ 
volume mesh "volume.12" cooper source "face.10" "face.39" "face.97" 
"face.95" 
volume mesh "volume.5" cooper source "face.98" "face.41" "face.37" 
"face.48" \ 
  "face.59" 
/ 
edge mesh "edge.81" successive ratio1 1 intervals 12 
/ 
face modify "face.99" end "vertex.66" 
face modify "face.49" end "vertex.67" 
/ 
volume mesh "volume.4" cooper source "face.49" "face.99" "face.36" 
/ 
edge mesh "edge.16" successive ratio1 1 intervals 12 
volume mesh "volume.3" cooper source "face.36" "face.40" size 0.07 
/ 
edge mesh "edge.437" "edge.438" successive ratio1 1 intervals 10 
/ 
face modify "face.205" side "vertex.267" 
face modify "face.205" side "vertex.268" 
face modify "face.204" side "vertex.261" 
face modify "face.204" side "vertex.262" 
/ 
volume mesh "volume.1" cooper source "face.202" "face.71" size 0.08 
volume delete "volume.1" lowertopology onlymesh 
/ 
edge mesh "edge.460" "edge.461" successive ratio1 1 intervals 8 
edge mesh "edge.6" successive ratio1 1 intervals 48 
/ 
face modify "face.215" side "vertex.274" 
face modify "face.215" side "vertex.273" 
face modify "face.2" side "vertex.260" 
face modify "face.2" side "vertex.259" 
/ 
volume mesh "volume.36" cooper source "face.208" "face.214" size 0.08 
volume delete "volume.36" lowertopology onlymesh 
/ 
edge mesh "edge.71" successive ratio1 1 intervals 13 
edge mesh "edge.445" successive ratio1 1 intervals 11 
edge mesh "edge.6" successive ratio1 1 intervals 54 
/ 
edge mesh "edge.449" successive ratio1 1 intervals 12 
edge mesh "edge.469" successive ratio1 1 intervals 1 
/ 
edge mesh "edge.460" "edge.461" successive ratio1 1 intervals 8 
edge mesh "edge.459" "edge.440" successive ratio1 1 intervals 8 
edge mesh "edge.465" "edge.466" successive ratio1 1 intervals 8 
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edge mesh "edge.463" "edge.464" successive ratio1 1 intervals 12 
/ 
edge mesh "edge.439" "edge.457" successive ratio1 1 intervals 12 
edge mesh "edge.455" "edge.456" successive ratio1 1 intervals 8 
edge mesh "edge.8" successive ratio1 1 intervals 54 
edge mesh "edge.444" successive ratio1 1 intervals 30 
edge mesh "edge.442" "edge.443" successive ratio1 1 intervals 12 
edge mesh "edge.453" "edge.454" successive ratio1 1 intervals 12 
edge mesh "edge.452" successive ratio1 1 intervals 30 
edge mesh "edge.441" "edge.4" successive ratio1 1 intervals 12 
edge mesh "edge.462" "edge.434" successive ratio1 1 intervals 30 
edge mesh "edge.435" "edge.436" successive ratio1 1 intervals 12 
edge mesh "edge.5" "edge.3" successive ratio1 1 intervals 12 
/ 
volume mesh "volume.1" cooper source "face.71" "face.202" size 0.08 
volume mesh "volume.36" cooper source "face.208" "face.214" size 0.08 
/ 
edge mesh "edge.468" successive ratio1 1 intervals 8 
edge mesh "edge.2" "edge.467" "edge.7" successive ratio1 1 intervals 
20 
/ 
face mesh "face.207" "face.217" "v_face.218" submap 
face mesh "v_face.219" submap 
volume mesh "v_volume.37" submap 
volume mesh "volume.35" map 
/ 
/ SPECIFYING CONTINUUM AND BOUNDARY TYPES 
/ 
solver select "FIDAP" 
/ 
physics create "fluid" ctype "FLUID" volume "v_volume.37" "volume.35" 
\ 
  "volume.3" "volume.8" "volume.4" "volume.5" "volume.10" "volume.7" 
\ 
  "volume.19" "volume.12" "volume.13" "volume.15" "volume.14" 
"volume.17" \ 
  "volume.18" "volume.11" "volume.21" "volume.22" "volume.23" 
"volume.24" \ 
  "volume.25" "volume.26" "volume.27" "volume.28" "volume.29" 
"volume.30" \ 
  "volume.31" "volume.32" "volume.1" "volume.36" 
/ 
physics create "tk_wall" btype "PLOT" face "face.3" 
physics create "tk_top" btype "PLOT" face "face.204" "face.4" 
"face.40" 
physics create "tk_bottom" btype "PLOT" face "face.2" "face.199" 
/ 
physics create "tk_symm" btype "PLOT" face "face.71" "face.217" 
"face.208" \ 
  "face.202" "face.207" "face.214" "v_face.219" "v_face.218" 
"face.44" \ 
  "face.45" "face.52" "face.11" "face.96" "face.47" "face.90" 
"face.125" \ 
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  "face.131" "face.89" "face.137" "face.177" "face.113" "face.116" 
"face.106" \ 
  "face.109" "face.111" "face.104" "face.85" "face.170" "face.79" 
"face.184" \ 
  "face.149" "face.84" "face.121" "face.128" "face.38" 
/ 
physics create "hp_sphr" btype "PLOT" face "face.10" "face.98" 
physics create "hp_cylr" btype "PLOT" face "face.6" 
physics create "hp_insu" btype "PLOT" face "face.46" 
/ 
physics create "pp_outlet" btype "PLOT" face "face.18" "face.122" 
physics create "pp_inlet" btype "PLOT" face "face.28" "face.127" 
physics create "pp_pipe" btype "PLOT" face "face.86" "face.27" 
"face.140" 
physics create "pp_nozzle" btype "PLOT" face "face.147" "face.83" 
"face.17" \ 
  "face.156" "face.155" "face.20" "face.13" 
physics create "pp_pump" btype "PLOT" face "face.176" "face.139" 
"face.180" \ 
  "face.188" "face.25" "face.164" "face.148" "face.163" "face.153" 
"face.192" 
/ 
/ EXPORTING MESH 
/ 
$ID = GETIDENT() 
$NEUTRALFILE = $ID + ".FDNEUT" 
export fidap $NEUTRALFILE 
 

 
D.2 Simulation Settings: FIDAP Commands 

/ FIDAP Input File 
/ SIMULATION SETTINGS 
/ PROJECT: Cryogenic LH2 Tank with Lateral Pump-Nozzle Unit 
/ Three-dimensional (3-D) model, SI units 
/ 
/ 
/ F0: heat flux on tank wall, Fp: heat flux on pump wall 
/ V0: nozzle speed, Tc: temperature of evaporator section of heat 
pipe  
$F0 = 2.0 
$V0 = 0.01 
$Tc = 18 
$Fp = 0.01 
/ 
/          CONVERSION OF NEUTRAL FILE TO FIDAP Database 
/ 
FICONV( NEUTRAL ) 
INPUT( FILE="mesh.FDNEUT" ) 
OUTPUT( DELETE ) 
END 
/ 
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TITLE 
LH2 tank w/ heat pipe & lateral pump-nozzle unit 
/ 
FIPREP 
/ 
/          PROBLEM SETUP 
/ 
PROBLEM( 3-D, TURBULENT, NONLINEAR, ENERGY ) 
EXECUTION( NEWJOB ) 
PRINTOUT( NONE ) 
DATAPRINT( NONE ) 
/ 
/          CONTINUUM ENTITIES 
/ 
ENTITY ( NAME = "fluid", FLUID, PROPERTY = "fluid" ) 
/ 
/          BOUNDARY ENTITIES 
/ 
ENTITY ( NAME = "tk_wall", WALL ) 
ENTITY ( NAME = "tk_top", WALL ) 
ENTITY ( NAME = "tk_bottom", WALL ) 
ENTITY ( NAME = "tk_symm", PLOT ) 
 
ENTITY ( NAME = "hp_sphr", WALL ) 
ENTITY ( NAME = "hp_cylr", WALL ) 
ENTITY ( NAME = "hp_insu", WALL ) 
 
ENTITY ( NAME = "pp_outlet", PLOT ) 
ENTITY ( NAME = "pp_inlet", PLOT ) 
 
ENTITY ( NAME = "pp_pipe", WALL ) 
ENTITY ( NAME = "pp_nozzle", WALL ) 
ENTITY ( NAME = "pp_pump", WALL ) 
/ 
/          SOLUTION PARAMETERS 
/ 
SOLUTION( SEGREGATED = 100, VELCONV = .001 ) 
PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 
RELAX( HYBRID ) 
OPTIONS( UPWINDING ) 
/ 
/          MATERIAL PROPERTIES 
/ 
/ Partial list of Material Properties data 
/ 
DENSITY( SET = "fluid", CONSTANT = 70.78 ) 
VISCOSITY( SET = "fluid", CONSTANT = 13.2E-6, MIXLENGTH ) 
CONDUCTIVITY( SET = "fluid", CONSTANT = 0.099 ) 
SPECIFICHEAT( SET = "fluid", CONSTANT = 9.688E3 ) 
/ 
/          INITIAL AND BOUNDARY CONDITIONS 
/ 
BCNODE( VELO, ZERO, ENTITY = "tk_wall" ) 
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BCNODE( VELO, ZERO, ENTITY = "tk_top" ) 
BCNODE( VELO, ZERO, ENTITY = "tk_bottom" ) 
BCNODE( UY, ZERO, ENTITY = "tk_symm" ) 
 
BCNODE( VELO, ZERO, ENTITY = "hp_sphr" ) 
BCNODE( VELO, ZERO, ENTITY = "hp_cylr" ) 
BCNODE( VELO, ZERO, ENTITY = "hp_insu" ) 
 
BCNODE( VELO, ZERO, ENTITY = "pp_pipe" ) 
BCNODE( VELO, ZERO, ENTITY = "pp_nozzle" ) 
BCNODE( VELO, ZERO, ENTITY = "pp_pump" ) 
/ 
BCNODE( UX, ZERO, ENTITY = "pp_inlet" ) 
BCNODE( UY, ZERO, ENTITY = "pp_inlet" ) 
BCNODE( VELO, CONSTANT, ENTITY = "pp_outlet", X = $V0, Y = 0, Z = 0 ) 
 
BCNODE( TEMP, CONSTANT = $Tc, ENTITY = "hp_sphr" ) 
BCNODE( TEMP, CONSTANT = $Tc, ENTITY = "hp_cylr" ) 
BCFLUX( HEAT, CONSTANT = $Fp, ENTITY = "pp_pump" ) 
 
BCFLUX( HEAT, CONSTANT = $F0, ENTITY = "tk_wall" ) 
BCFLUX( HEAT, CONSTANT = $F0, ENTITY = "tk_top" ) 
BCFLUX( HEAT, CONSTANT = $F0, ENTITY = "tk_bottom" ) 
/ 
CLIPPING( MINIMUM ) 
0 0 0 0 $Tc 
/ 
END 
/ 
CREATE( FISOLV ) 
RUN( FISOLV, BACKGROUND ) 
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Appendix E: GAMBIT/FIDAP Preprocessing Input for Chapter 6 

E.1 Geometry and Meshing: GAMBIT Commands 

/ GAMBIT Input File 
/ GEOMETRY and MESHING 
/ PROJECT: Cryogenic LH2 Tank with Axial Pump-Nozzle Unit 
/ Axisymmetric model, SI units 
/ 
/ CREATING THE GEOMETRY 
/ 
vertex create coordinates 0 0 0 
vertex create coordinates 0.65 0 0 
vertex create coordinates 1.95 0 0 
vertex create coordinates 2.6 0 0 
vertex create coordinates 1.95 1.5 0 
vertex create coordinates 0.65 1.5 0 
edge create center "vertex.2" major "vertex.6" onedge "vertex.1" 
start 0 end \ 
  90 ellipse 
edge create center "vertex.3" major "vertex.5" onedge "vertex.4" 
start 0 end \ 
  90 ellipse 
edge create straight "vertex.6" "vertex.5" 
edge create straight "vertex.1" "vertex.4" 
vertex create coordinates 0 0.1 0 
vertex create coordinates 1.2 0.1 0 
vertex create coordinates 1.4 0.1 0 
vertex create coordinates 1.4 0 0 
vertex create coordinates 1.2 0 0 
vertex create coordinates 1.5 0 0 
coordinate create cartesian oldsystem "c_sys.1" offset 1.7 0 0 axis1 
"x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
vertex create coordinates 0 0 0 
vertex create coordinates 0 0.1 0 
vertex create coordinates 0.05 0.1 0 
vertex create coordinates 0.05 0.05 0 
vertex create coordinates 0.1 0.05 0 
vertex create coordinates 0.3 0 0 
vertex create coordinates 0.6 0 0 
vertex create coordinates 0.6 0.05 0 
edge create center2points "vertex.16" "vertex.15" "vertex.17" minarc 
arc 
edge create straight "vertex.13" "vertex.14" "vertex.15" 
edge create straight "vertex.17" "vertex.20" "vertex.19" 
vertex create coordinates 0.3 0.1 0 
vertex create coordinates 0.4 0 0 
edge create center2points "vertex.18" "vertex.21" "vertex.22" circle 
edge split "edge.10" edge "edge.8" keeptool connected 
edge delete "edge.12" lowertopology 
edge split "edge.8" edge "edge.13" keeptool connected 
edge split "edge.15" edge "edge.10" keeptool connected 
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edge delete "edge.15" lowertopology 
edge create straight "vertex.7" "vertex.8" "vertex.9" 
edge create center2points "vertex.10" "vertex.9" "vertex.12" minarc 
arc 
edge split "edge.1" edge "edge.18" keeptool connected 
edge delete "edge.22" lowertopology 
edge split "edge.18" edge "edge.1" keeptool connected 
edge delete "edge.18" lowertopology 
edge split "edge.4" edge "edge.20" keeptool connected 
edge delete "edge.4" lowertopology 
edge split "edge.24" edge "edge.6" keeptool connected 
edge split "edge.26" edge "edge.9" keeptool connected 
edge delete "edge.26" lowertopology 
face create wireframe "edge.1" "edge.3" "edge.2" "edge.28" "edge.9" 
"edge.17" \ 
  "edge.10" "edge.13" "edge.8" "edge.5" "edge.7" "edge.6" "edge.24" \ 
  "edge.20" "edge.19" "edge.22" real 
/ 
/ MESHING THE MODEL 
/ 
blayer create first 0.005 growth 1.2 total 0.02684 rows 4 transition 
1 trows \ 
  0 
blayer attach "b_layer.1" face "face.1" "face.1" "face.1" "face.1" 
"face.1" \ 
  "face.1" "face.1" "face.1" "face.1" "face.1" "face.1" "face.1" 
"face.1" \ 
  "face.1" "face.1" "face.1" edge "edge.1" "edge.3" "edge.2" 
"edge.28" \ 
  "edge.9" "edge.17" "edge.10" "edge.13" "edge.8" "edge.5" "edge.7" 
"edge.6" \ 
  "edge.24" "edge.20" "edge.19" "edge.22" 
edge mesh "edge.19" "edge.20" "edge.24" successive ratio1 1 size 0.01 
edge mesh "edge.6" "edge.9" successive ratio1 1 size 0.005 
face mesh "face.1" pave size 0.02 
/ 
/ SPECIFYING CONTINUUM AND BOUNDARY TYPES 
/ 
solver select "FIDAP" 
/ 
physics create "fluid" ctype "FLUID" face "face.1" 
physics create "tk_wall" btype "WALL" edge "edge.1" "edge.3" "edge.2" 
physics create "tk_symm" btype "PLOT" edge "edge.24" "edge.28" 
physics create "hp_adia" btype "WALL" edge "edge.22" 
physics create "hp_evap" btype "WALL" edge "edge.19" "edge.20" 
physics create "pp_wall" btype "WALL" edge "edge.7" "edge.5" "edge.8" 
\ 
  "edge.13" "edge.10" "edge.17" 
physics create "pp_nozz" btype "PLOT" edge "edge.6" 
physics create "pp_suct" btype "PLOT" edge "edge.9" 
/ 
/ EXPORTING MESH 
/ 
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$ID = GETIDENT() 
$NEUTRALFILE = $ID + ".FDNEUT" 
export fidap $NEUTRALFILE 
 

 
E.2 Simulation Settings: FIDAP Commands 

/ FIDAP Input File 
/ SIMULATION SETTINGS – STAGE 1 
/ PROJECT: Cryogenic LH2 Tank with Axial Pump-Nozzle Unit 
/ Axisymmetric model, SI units, Transient analysis 
/ 
/ 
/ F0: heat flux on tank wall  
/ T1: temperature of evaporator section of heat pipe 
$F0 = 1 
$T1 = 20 
/ 
FICONV( NEUTRAL ) 
INPUT( FILE="mesh.FDNEUT" ) 
OUTPUT( DELETE ) 
END 
/ 
TITLE 
LH2 tank w/ heat pipe & axial pump-nozzle unit. Stage 1 
/ 
FIPREP 
/ 
/          PROBLEM SETUP 
/ 
PROBLEM( AXI-, TRANSIENT, TURBULENT, NONLINEAR, ENERGY ) 
EXECUTION( NEWJOB ) 
PRINTOUT( NONE ) 
DATAPRINT( NONE ) 
/ 
/          CONTINUUM ENTITIES 
/ 
ENTITY ( NAME = "fluid", FLUID, PROPERTY = "fluid" ) 
/ 
/          BOUNDARY ENTITIES 
/ 
ENTITY ( NAME = "tk_wall", WALL ) 
ENTITY ( NAME = "tk_symm", PLOT ) 
ENTITY ( NAME = "hp_adia", WALL ) 
ENTITY ( NAME = "hp_evap", WALL ) 
ENTITY ( NAME = "pp_wall", WALL ) 
ENTITY ( NAME = "pp_nozz", PLOT ) 
ENTITY ( NAME = "pp_suct", PLOT ) 
/ 
/          SOLUTION PARAMETERS 
/ 
PRESSURE( PENALTY = 1.E-9, DISCONTINUOUS ) 
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OPTIONS( UPWINDING ) 
SOLUTION( S.S. = 50, VELCONV = 1E-4, RESCONV = 1E-2, ACCF = 0.5 ) 
TIMEINTEGRATION( DT = 3600, NSTEPS = 84, FIXED ) 
/ 
/          MATERIAL PROPERTIES 
/ 
/ Partial list of Material Properties data 
/ 
DENSITY( SET = "fluid", CONSTANT = 70 ) 
VISCOSITY( SET = "fluid", CONSTANT = 12E-6, MIXLENGTH ) 
CONDUCTIVITY( SET = "fluid", CONSTANT = 0.1 ) 
SPECIFICHEAT( SET = "fluid", CONSTANT = 1E4 ) 
/ 
/          INITIAL AND BOUNDARY CONDITIONS 
/ 
ICNODE( TEMP, CONSTANT = $T1, ALL ) 
/ 
BCNODE( VELO, ZERO, ENTITY = "tk_wall" ) 
BCNODE( VELO, ZERO, ENTITY = "hp_adia" ) 
BCNODE( VELO, ZERO, ENTITY = "hp_evap" ) 
BCNODE( VELO, ZERO, ENTITY = "pp_wall" ) 
BCNODE( UY, ZERO, ENTITY = "tk_symm" ) 
BCNODE( VELO, ZERO, ENTITY = "pp_nozz" ) 
/ 
BCFLUX( HEAT, CONSTANT = $F0, ENTITY = "tk_wall" ) 
BCNODE( TEMP, CONSTANT = $T1, ENTITY = "hp_evap" ) 
/ 
CLIPPING( MINIMUM ) 
0 0 0 0 $T1 
END 
/ 
CREATE( FISOLV ) 
RUN( FISOLV, BACKGROUND ) 
 

 
/ FIDAP Input File 
/ SIMULATION SETTINGS – STAGE 2 
/ PROJECT: Cryogenic LH2 Tank with Axial Pump-Nozzle Unit 
/ Axisymmetric model, SI units, Transient analysis 
/ 
/ 
/ V2: fluid velocity at nozzle 
$V2 = 0.08 
/ 
TITLE 
LH2 tank w/ heat pipe & axial pump-nozzle unit. Stage 2 
/ 
FIPREP 
/ 
/          SOLUTION PARAMETERS 
/ 
SOLUTION( S.S. = 50, VELCONV = 1E-4, RESCONV = 1E-2, ACCF = 0.5 ) 
TIMEINTEGRATION( DT = 300, NSTEPS = 12, FIXED ) 
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/ 
/          INITIAL AND BOUNDARY CONDITIONS 
/ 
ICNODE( TEMP, READ, ALL ) 
/ 
BCNODE( UX, CONST = -$V2, ENTITY = "pp_nozz" ) 
/ 
END 
/ 
CREATE( FISOLV ) 
RUN( FISOLV, BACKGROUND, RESTART = "stage1.FDPOST" ) 
 

 
/ FIDAP Input File 
/ SIMULATION SETTINGS – STAGE 3 
/ PROJECT: Cryogenic LH2 Tank with Axial Pump-Nozzle Unit 
/ Axisymmetric model, SI units, Transient analysis 
/ 
/ 
TITLE 
LH2 tank w/ heat pipe & axial pump-nozzle unit. Stage 3 
/ 
FIPREP 
/ 
/          SOLUTION PARAMETERS 
/ 
SOLUTION( S.S. = 50, VELCONV = 1E-4, RESCONV = 1E-2, ACCF = 0.5 ) 
TIMEINTEGRATION( DT = 3600, NSTEPS = 67, FIXED ) 
/ 
/          INITIAL AND BOUNDARY CONDITIONS 
/ 
ICNODE( TEMP, READ, ALL ) 
ICNODE( VELO, READ, ALL ) 
/ 
BCNODE( UX, ZERO, ENTITY = "pp_nozz" ) 
BCNODE( VELO, ZERO, ENTITY = "pp_suct" ) 
/ 
END 
/ 
CREATE( FISOLV ) 
RUN( FISOLV, BACKGROUND, RESTART = "stage2.FDPOST" ) 
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Appendix F: GAMBIT/FIDAP Preprocessing Input for Chapter 7 

F.1 Geometry and Meshing for 2-D Model: GAMBIT Commands 

/ GAMBIT Input File 
/ GEOMETRY and MESHING 
/ PROJECT: Refrigerated Warehouse with Ceiling Type Cooling Units 
/ Two-dimensional (2-D) model, SI units 
/ 
/ 
/ Neutral file name to be exported 
$ID = GETIDENT() 
$NEUTRALFILE = $ID + ".FDNEUT" 
/ 
/ Boundary layer mesh parameters: R = ratio, N = number of intervals 
$R = 1.5 
$N = 3 
$S = 0.1 
/ 
/ Evaporator position index 
$I = 0 
$J = 0 
/ 
/ -------------------------------------              $J 
/ | Simulation # | Position | $I | $J |              | 
/ -------------------------------------         3----8----4 
/ |      0       |  CENTER  |  0 |  0 |         |    |    | 
/ |      1       |    SW    | -1 | -1 |         |    |    | 
/ |      2       |    SE    | +1 | -1 |         6----0----7--$I 
/ |      3       |    NW    | -1 | +1 |         |    |    | 
/ |      4       |    NE    | +1 | +1 |         |    |    | 
/ -------------------------------------         1----5----2 
/ |      5       |    S     |  0 | -1 | 
/ |      6       |    W     | -1 |  0 | 
/ |      7       |    E     | +1 |  0 | 
/ |      8       |    N     |  0 | +1 | 
/ ------------------------------------- 
/ 
/ X = distance from front wall to evaporator face 
/ Y = height of evaporator (fan) centerline 
$X0 = 1.1 
$Y0 = 3.3 
$dX = 0.2 
$dY = 0.2 
$X = $X0 + $dX*$I 
$Y = $Y0 + $dY*$J 
/ 
/ REFRIGERATED SPACE 
/ 
face create width 7.0 height 4.0 offset 3.5 2.0 0 xyplane rectangle 
face create width 6.9 height 3.9 offset 3.5 2.0 0 xyplane rectangle 
edge create straight "vertex.1" "vertex.5" 
edge create straight "vertex.2" "vertex.6" 
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edge create straight "vertex.3" "vertex.7" 
edge create straight "vertex.4" "vertex.8" 
face create wireframe "edge.1" "edge.5" "edge.9" "edge.10" real 
face create wireframe "edge.2" "edge.6" "edge.10" "edge.11" real 
face create wireframe "edge.3" "edge.7" "edge.11" "edge.12" real 
face create wireframe "edge.4" "edge.8" "edge.12" "edge.9" real 
/ 
/ PACKAGES 
/ 
coordinate create cartesian oldsystem "c_sys.1" offset 1.7 0.1 0 
axis1 "x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
face create width 1.2 height 0.8 offset 0.6 0.4 0 xyplane rectangle 
face create width 1.3 height 0.9 offset 0.6 0.4 0 xyplane rectangle 
face cmove "face.7" "face.8" multiple 2 offset 0 0.9 0 
face cmove "face.7" "face.8" "face.9" "face.10" "face.11" "face.12" \ 
  multiple 3 offset 1.3 0 0 
/ 
face split "face.2" connected face "face.8" 
face split "face.2" connected face "face.10" 
face split "face.2" connected face "face.12" 
face split "face.2" connected face "face.14" 
face split "face.2" connected face "face.16" 
face split "face.2" connected face "face.18" 
face split "face.2" connected face "face.20" 
face split "face.2" connected face "face.22" 
face split "face.2" connected face "face.24" 
face split "face.2" connected face "face.26" 
face split "face.2" connected face "face.28" 
face split "face.2" connected face "face.30" 
/ 
/ 1 
edge create straight "vertex.9" "vertex.105" 
edge create straight "vertex.10" "vertex.106" 
edge create straight "vertex.11" "vertex.108" 
edge create straight "vertex.12" "vertex.107" 
/ 2 
edge create straight "vertex.17" "vertex.107" 
edge create straight "vertex.18" "vertex.108" 
edge create straight "vertex.19" "vertex.110" 
edge create straight "vertex.20" "vertex.109" 
/ 3 
edge create straight "vertex.25" "vertex.109" 
edge create straight "vertex.26" "vertex.110" 
edge create straight "vertex.27" "vertex.112" 
edge create straight "vertex.28" "vertex.111" 
/ 4 
edge create straight "vertex.33" "vertex.106" 
edge create straight "vertex.34" "vertex.113" 
edge create straight "vertex.35" "vertex.114" 
edge create straight "vertex.36" "vertex.108" 
/ 5 
edge create straight "vertex.41" "vertex.108" 
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edge create straight "vertex.42" "vertex.114" 
edge create straight "vertex.43" "vertex.115" 
edge create straight "vertex.44" "vertex.110" 
/ 6 
edge create straight "vertex.49" "vertex.110" 
edge create straight "vertex.50" "vertex.115" 
edge create straight "vertex.51" "vertex.116" 
edge create straight "vertex.52" "vertex.112" 
/ 7 
edge create straight "vertex.57" "vertex.113" 
edge create straight "vertex.58" "vertex.117" 
edge create straight "vertex.59" "vertex.118" 
edge create straight "vertex.60" "vertex.114" 
/ 8 
edge create straight "vertex.65" "vertex.114" 
edge create straight "vertex.66" "vertex.118" 
edge create straight "vertex.67" "vertex.119" 
edge create straight "vertex.68" "vertex.115" 
/ 9 
edge create straight "vertex.73" "vertex.115" 
edge create straight "vertex.74" "vertex.119" 
edge create straight "vertex.75" "vertex.120" 
edge create straight "vertex.76" "vertex.116" 
/ 10 
edge create straight "vertex.81" "vertex.117" 
edge create straight "vertex.82" "vertex.121" 
edge create straight "vertex.83" "vertex.122" 
edge create straight "vertex.84" "vertex.118" 
/ 11 
edge create straight "vertex.89" "vertex.118" 
edge create straight "vertex.90" "vertex.122" 
edge create straight "vertex.91" "vertex.123" 
edge create straight "vertex.92" "vertex.119" 
/ 12 
edge create straight "vertex.97" "vertex.119" 
edge create straight "vertex.98" "vertex.123" 
edge create straight "vertex.99" "vertex.124" 
edge create straight "vertex.100" "vertex.120" 
/ 
/ 1 
face create wireframe "edge.13" "edge.109" "edge.141" "edge.142" real 
face create wireframe "edge.14" "edge.112" "edge.142" "edge.143" real 
face create wireframe "edge.15" "edge.113" "edge.143" "edge.144" real 
face create wireframe "edge.16" "edge.111" "edge.144" "edge.141" real 
/ 2 
face create wireframe "edge.21" "edge.113" "edge.145" "edge.146" real 
face create wireframe "edge.22" "edge.115" "edge.146" "edge.147" real 
face create wireframe "edge.23" "edge.116" "edge.147" "edge.148" real 
face create wireframe "edge.24" "edge.114" "edge.148" "edge.145" real 
/ 3 
face create wireframe "edge.29" "edge.116" "edge.149" "edge.150" real 
face create wireframe "edge.30" "edge.118" "edge.150" "edge.151" real 
face create wireframe "edge.31" "edge.119" "edge.151" "edge.152" real 
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face create wireframe "edge.32" "edge.117" "edge.152" "edge.149" real 
/ 4 
face create wireframe "edge.37" "edge.110" "edge.153" "edge.154" real 
face create wireframe "edge.38" "edge.121" "edge.154" "edge.155" real 
face create wireframe "edge.39" "edge.122" "edge.155" "edge.156" real 
face create wireframe "edge.40" "edge.112" "edge.156" "edge.153" real 
/ 5 
face create wireframe "edge.45" "edge.122" "edge.157" "edge.158" real 
face create wireframe "edge.46" "edge.123" "edge.158" "edge.159" real 
face create wireframe "edge.47" "edge.124" "edge.159" "edge.160" real 
face create wireframe "edge.48" "edge.115" "edge.160" "edge.157" real 
/ 6 
face create wireframe "edge.53" "edge.124" "edge.161" "edge.162" real 
face create wireframe "edge.54" "edge.125" "edge.162" "edge.163" real 
face create wireframe "edge.55" "edge.126" "edge.163" "edge.164" real 
face create wireframe "edge.56" "edge.118" "edge.164" "edge.161" real 
/ 7 
face create wireframe "edge.61" "edge.120" "edge.165" "edge.166" real 
face create wireframe "edge.62" "edge.128" "edge.166" "edge.167" real 
face create wireframe "edge.63" "edge.129" "edge.167" "edge.168" real 
face create wireframe "edge.64" "edge.121" "edge.168" "edge.165" real 
/ 8 
face create wireframe "edge.69" "edge.129" "edge.169" "edge.170" real 
face create wireframe "edge.70" "edge.130" "edge.170" "edge.171" real 
face create wireframe "edge.71" "edge.131" "edge.171" "edge.172" real 
face create wireframe "edge.72" "edge.123" "edge.172" "edge.169" real 
/ 9 
face create wireframe "edge.77" "edge.131" "edge.173" "edge.174" real 
face create wireframe "edge.78" "edge.132" "edge.174" "edge.175" real 
face create wireframe "edge.79" "edge.133" "edge.175" "edge.176" real 
face create wireframe "edge.80" "edge.125" "edge.176" "edge.173" real 
/ 10 
face create wireframe "edge.85" "edge.127" "edge.177" "edge.178" real 
face create wireframe "edge.86" "edge.135" "edge.178" "edge.179" real 
face create wireframe "edge.87" "edge.136" "edge.179" "edge.180" real 
face create wireframe "edge.88" "edge.128" "edge.180" "edge.177" real 
/ 11 
face create wireframe "edge.93" "edge.136" "edge.181" "edge.182" real 
face create wireframe "edge.94" "edge.137" "edge.182" "edge.183" real 
face create wireframe "edge.95" "edge.138" "edge.183" "edge.184" real 
face create wireframe "edge.96" "edge.130" "edge.184" "edge.181" real 
/ 12 
face create wireframe "edge.101" "edge.138" "edge.185" "edge.186" 
real 
face create wireframe "edge.102" "edge.139" "edge.186" "edge.187" 
real 
face create wireframe "edge.103" "edge.140" "edge.187" "edge.188" 
real 
face create wireframe "edge.104" "edge.132" "edge.188" "edge.185" 
real 
/ 
/ EVAPORATOR 
/ 
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coordinate create cartesian oldsystem "c_sys.1" offset $X $Y 0 axis1 
"x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
face create width 0.4 height 0.6 offset -0.2 0 0 xyplane rectangle 
face create width 0.5 height 0.7 offset -0.2 0 0 xyplane rectangle 
face create width 0.5 height 0.4 offset -0.2 0 0 xyplane rectangle 
vertex create coordinates 0.05 0 0 
vertex create coordinates 0.2 0 0 
face create center "vertex.137" major "vertex.135" onedge 
"vertex.138" ellipse 
face creflect "face.94" multiple 1 vector 1 0 0 origin -0.2 0 0 
face create width 0.9 height 0.06 offset -0.2 0 0 xyplane rectangle 
face create width 0.9 height 0.5 offset -0.2 0 0 xyplane rectangle 
face unite faces "face.93" "face.94" "face.95" real 
face create width 8 height 0.2 offset 0.25 0 0 yzplane rectangle 
face split "face.2" face "face.98" 
face split "face.99" connected face "face.91" 
face split "face.99" connected face "face.93" 
face split "face.99" connected face "face.92" 
face split "face.99" connected face "face.97" bientity 
face delete "face.97" lowertopology 
face split "face.101" connected face "face.96" keeptool  
face split "face.93" connected face "face.96" 
/ 
/ MESHING 
/ 
default set "MESH.NODES.EDGE" numeric 2 
default set "MESH.NODES.QUAD" numeric 4 
/ 
/ MESH UNOCCUPIED SPACE 
/ 
face mesh "face.2" "face.99" submap size $S 
/ 
/ MESH PACKAGE ENVELOPES 
/ 
edge mesh "edge.141" "edge.142" "edge.143" "edge.144" "edge.145" \ 
  "edge.146" "edge.147" "edge.148" "edge.149" "edge.150" \ 
  "edge.151" "edge.152" "edge.153" "edge.154" "edge.155" \ 
  "edge.156" "edge.157" "edge.158" "edge.159" "edge.160" \ 
  "edge.161" "edge.162" "edge.163" "edge.164" "edge.165" \ 
  "edge.166" "edge.167" "edge.168" "edge.169" "edge.170" \ 
  "edge.171" "edge.172" "edge.173" "edge.174" "edge.175" \ 
  "edge.176" "edge.177" "edge.178" "edge.179" "edge.180" \ 
  "edge.181" "edge.182" "edge.183" "edge.184" "edge.185" \ 
  "edge.186" "edge.187" "edge.188" \ 
  successive ratio1 $R intervals $N 
face mesh "face.43" "face.44" "face.45" "face.46" "face.47" "face.48" 
\ 
  "face.49" "face.50" "face.51" "face.52" "face.53" "face.54" 
"face.55" \ 
  "face.56" "face.57" "face.58" "face.59" "face.60" "face.61" 
"face.62" \ 
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  "face.63" "face.64" "face.65" "face.66" "face.67" "face.68" 
"face.69" \ 
  "face.70" "face.71" "face.72" "face.73" "face.74" "face.75" 
"face.76" \ 
  "face.77" "face.78" "face.79" "face.80" "face.81" "face.82" 
"face.83" \ 
  "face.84" "face.85" "face.86" "face.87" "face.88" "face.89" 
"face.90" \ 
  map size $S 
/ 
/ MESH PACKAGES 
/ 
face mesh "face.7" "face.9" "face.11" "face.13" "face.15" "face.17" 
"face.19" \ 
  "face.21" "face.23" "face.25" "face.27" "face.29" map 
/ 
/ MESH FLOOR, WALLS, CEILING 
/ 
edge mesh "edge.9" "edge.10" "edge.11" "edge.12" \ 
  successive ratio1 $R intervals $N 
face mesh "face.3" "face.4" "face.5" "face.6" map 
/ 
/ MESH EVAPORATOR, INLET/OUTLET 
/ 
edge mesh "edge.234" "edge.235" "edge.242" "edge.243" successive 
ratio1 1 \ 
  intervals 2 
edge mesh "edge.219" "edge.220" "edge.222" "edge.231" successive 
ratio1 1 \ 
  intervals 3 
edge modify "edge.224" "edge.229" backward 
edge mesh "edge.223" "edge.224" "edge.229" "edge.230" successive 
ratio1 $R \ 
  intervals $N 
edge modify "edge.252" "edge.261" backward 
edge mesh "edge.252" "edge.227" "edge.261" "edge.226" firstlength 
ratio1 \ 
  0.025 intervals 4 
/ 
face modify "face.103" side "vertex.166" 
face modify "face.103" side "vertex.167" 
face modify "face.103" side "vertex.154" 
face modify "face.103" side "vertex.155" 
face mesh "face.103" map 
face modify "face.92" side "vertex.168" 
face modify "face.92" side "vertex.169" 
face modify "face.92" side "vertex.156" 
face modify "face.92" side "vertex.157" 
face mesh "face.92" map 
face modify "face.105" side "vertex.145" 
face modify "face.105" side "vertex.146" 
face mesh "face.105" map 
face mesh "face.101" "face.108" triprimitive 
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face mesh "face.107" map 
face modify "face.106" side "vertex.144" 
face modify "face.106" side "vertex.147" 
face mesh "face.106" map 
face mesh "face.93" "face.110" triprimitive 
face mesh "face.96" map 
/ 
/ DEFINING ENTITIES 
/ 
solver select "FIDAP" 
physics create "floor" btype "WALL" edge "edge.1" 
physics create "ceiling" btype "WALL" edge "edge.3" 
physics create "wall_1" btype "WALL" edge "edge.4" 
physics create "wall_2" btype "WALL" edge "edge.2" 
/ 
physics create "box_11" btype "WALL" edge "edge.13" "edge.14" 
"edge.15" \ 
  "edge.16" 
physics create "box_21" btype "WALL" edge "edge.21" "edge.22" 
"edge.23" \ 
  "edge.24" 
physics create "box_31" btype "WALL" edge "edge.29" "edge.30" 
"edge.31" \ 
  "edge.32" 
physics create "box_12" btype "WALL" edge "edge.37" "edge.38" 
"edge.39" \ 
  "edge.40" 
physics create "box_22" btype "WALL" edge "edge.45" "edge.46" 
"edge.47" \ 
  "edge.48" 
physics create "box_32" btype "WALL" edge "edge.53" "edge.54" 
"edge.55" \ 
  "edge.56" 
physics create "box_13" btype "WALL" edge "edge.61" "edge.62" 
"edge.63" \ 
  "edge.64" 
physics create "box_23" btype "WALL" edge "edge.69" "edge.70" 
"edge.71" \ 
  "edge.72" 
physics create "box_33" btype "WALL" edge "edge.77" "edge.78" 
"edge.79" \ 
  "edge.80" 
physics create "box_14" btype "WALL" edge "edge.85" "edge.86" 
"edge.87" \ 
  "edge.88" 
physics create "box_24" btype "WALL" edge "edge.93" "edge.94" 
"edge.95" \ 
  "edge.96" 
physics create "box_34" btype "WALL" edge "edge.101" "edge.102" 
"edge.103" \ 
  "edge.104" 
/ 
physics create "evap_cover" btype "WALL" edge "edge.219" "edge.218" \ 
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  "edge.222" "edge.220" "edge.221" "edge.231" 
physics create "evap_blow" btype "PLOT" edge "edge.227" "edge.252" \ 
  "edge.254" 
physics create "evap_suct" btype "PLOT" edge "edge.226" "edge.259" \ 
  "edge.261" 
/ 
physics create "fluid" ctype "FLUID" face \ 
  "face.2" "face.99" "face.3" "face.4" "face.5" "face.6" \ 
  "face.43" "face.44" "face.45" "face.46" "face.47" "face.48" \ 
  "face.49" "face.50" "face.51" "face.52" "face.53" "face.54" 
"face.55" \ 
  "face.56" "face.57" "face.58" "face.59" "face.60" "face.61" 
"face.62" \ 
  "face.63" "face.64" "face.65" "face.66" "face.67" "face.68" 
"face.69" \ 
  "face.70" "face.71" "face.72" "face.73" "face.74" "face.75" 
"face.76" \ 
  "face.77" "face.78" "face.79" "face.80" "face.81" "face.82" 
"face.83" \ 
  "face.84" "face.85" "face.86" "face.87" "face.88" "face.89" 
"face.90" \ 
  "face.103" "face.92" "face.105" "face.106" "face.107" "face.101" \ 
  "face.108" "face.96" "face.93" "face.110" 
physics create "pack_11" ctype "SOLID" face "face.7" 
physics create "pack_21" ctype "SOLID" face "face.9" 
physics create "pack_31" ctype "SOLID" face "face.11" 
physics create "pack_12" ctype "SOLID" face "face.13" 
physics create "pack_22" ctype "SOLID" face "face.15" 
physics create "pack_32" ctype "SOLID" face "face.17" 
physics create "pack_13" ctype "SOLID" face "face.19" 
physics create "pack_23" ctype "SOLID" face "face.21" 
physics create "pack_33" ctype "SOLID" face "face.23" 
physics create "pack_14" ctype "SOLID" face "face.25" 
physics create "pack_24" ctype "SOLID" face "face.27" 
physics create "pack_34" ctype "SOLID" face "face.29" 
/ 
export fidap $NEUTRALFILE 
 

 
F.2 Simulation Settings for 2-D Model: FIDAP Commands 

/ FIDAP Input File 
/ SIMULATION SETTINGS 
/ PROJECT: Refrigerated Warehouse with Ceiling Type Cooling Units 
/ Two-dimensional (2-D) model, SI units 
/ 
/ 
/ Neutral file name 
$NEUTRALFILE = "mesh.FDNEUT" 
/ 
/          CONVERSION OF NEUTRAL FILE TO FIDAP Database 
/ 



www.manaraa.com

Appendix F (Continued) 

 255

FICONV( NEUTRAL ) 
INPUT( FILE=$NEUTRALFILE ) 
OUTPUT( DELETE ) 
END 
/ 
TITLE 
Refrigerated Warehouse, 2-D model 
/ 
/          CONSTANTS 
/ 
$V_SUPPLY = 0.5 
$T_SUPPLY = 0 
$F_LIGHT = 10 
/ 
IF ( $T_SUPPLY .EQ. 0 ) 
$T_MIN = 1.E-20 
ELSE 
$T_MIN = $T_SUPPLY 
ENDIF 
/ 
$G = 9.8 
$RHO = 1.293 
$MU = 17.20E-6 
$K = 24.07E-3 
$CP = 1.004E3 
$BETA = 3.663E-3 
$TREF = 0 
/ 
$RHO_2 = 840 
$K_2 = 0.52 
$CP_2 = 3.79E3 
/ 
$H_CCF = 1.18 
$T_GROUND = 15 
$H_PUR = 0.23 
$T_AMBIENT = 35 
$T_LIGHTEQ = $T_AMBIENT + $F_LIGHT/$H_PUR 
/ 
/ ABBREVIATIONS 
/ CCF: concrete floor 
/ PUR: polyurethane 
/ 
FIPREP 
/ 
/          PROBLEM SETUP 
/ 
GRAVITY( MAGNITUDE = $G ) 
PROBLEM( 2-D, TURBULENT, NONLINEAR, BUOYANCY ) 
EXECUTION( NEWJOB ) 
PRINTOUT( NONE ) 
DATAPRINT( NONE ) 
/ 
/          CONTINUUM ENTITIES 
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/ 
ENTITY( NAME = "fluid", FLUID, PROPERTY = "fluid" ) 
ENTITY( NAME = "pack_11", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_21", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_31", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_12", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_22", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_32", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_13", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_23", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_33", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_14", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_24", SOLID, PROPERTY = "pack" ) 
ENTITY( NAME = "pack_34", SOLID, PROPERTY = "pack" ) 
/ 
/          BOUNDARY ENTITIES 
/ 
ENTITY( NAME = "floor", CONVECTION, MCNV = "floor" ) 
ENTITY( NAME = "ceiling", CONVECTION, MCNV = "light" ) 
ENTITY( NAME = "wall_1", CONVECTION, MCNV = "walls" ) 
ENTITY( NAME = "wall_2", CONVECTION, MCNV = "walls" ) 
ENTITY( NAME = "box_11", WALL, ATTACH = "fluid", NATTACH = "pack_11") 
ENTITY( NAME = "box_21", WALL, ATTACH = "fluid", NATTACH = "pack_21") 
ENTITY( NAME = "box_31", WALL, ATTACH = "fluid", NATTACH = "pack_31") 
ENTITY( NAME = "box_12", WALL, ATTACH = "fluid", NATTACH = "pack_12") 
ENTITY( NAME = "box_22", WALL, ATTACH = "fluid", NATTACH = "pack_22") 
ENTITY( NAME = "box_32", WALL, ATTACH = "fluid", NATTACH = "pack_32") 
ENTITY( NAME = "box_13", WALL, ATTACH = "fluid", NATTACH = "pack_13") 
ENTITY( NAME = "box_23", WALL, ATTACH = "fluid", NATTACH = "pack_23") 
ENTITY( NAME = "box_33", WALL, ATTACH = "fluid", NATTACH = "pack_33") 
ENTITY( NAME = "box_14", WALL, ATTACH = "fluid", NATTACH = "pack_14") 
ENTITY( NAME = "box_24", WALL, ATTACH = "fluid", NATTACH = "pack_24") 
ENTITY( NAME = "box_34", WALL, ATTACH = "fluid", NATTACH = "pack_34") 
ENTITY( NAME = "evap_cover", WALL ) 
ENTITY( NAME = "evap_blow", PLOT ) 
ENTITY( NAME = "evap_suct", PLOT ) 
/ 
/          SOLUTION PARAMETERS 
/ 
SOLUTION( S.S. = 100, VELCONV = .01, RESCONV = .01, ACCF = .5 ) 
PRESSURE( MIXED = 1.E-9, DISCONTINUOUS ) 
OPTIONS( UPWINDING ) 
POSTPROCESS( RESIDUAL ) 
CLIPPING( MINIMUM ) 
0 0 0 0 $T_MIN 
/ 
/          MATERIAL PROPERTIES 
/ 
/ Partial list of Material Properties data 
/ 
DENSITY( SET = "fluid", CONSTANT = $RHO ) 
VISCOSITY( SET = "fluid", CONSTANT = $MU, MIXLENGTH ) 
CONDUCTIVITY( SET = "fluid", CONSTANT = $K ) 
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SPECIFICHEAT( SET = "fluid", CONSTANT = $CP ) 
VOLUMEXPANSION( SET = "fluid", CONSTANT = $BETA, REFTEMP = $TREF ) 
/ 
DENSITY( SET = "pack", CONSTANT = $RHO_2 ) 
CONDUCTIVITY( SET = "pack", CONSTANT = $K_2 ) 
SPECIFICHEAT( SET = "pack", CONSTANT = $CP_2 ) 
/ 
HTRANSFER( SET = "floor", CONSTANT = $H_CCF, REFTEMP = $T_GROUND ) 
HTRANSFER( SET = "light", CONSTANT = $H_PUR, REFTEMP = $T_LIGHTEQ ) 
HTRANSFER( SET = "walls", CONSTANT = $H_PUR, REFTEMP = $T_AMBIENT ) 
/ 
/          INITIAL AND BOUNDARY CONDITIONS 
/ 
BCNODE( VELO, ZERO, ENTITY = "floor" ) 
BCNODE( VELO, ZERO, ENTITY = "ceiling" ) 
BCNODE( VELO, ZERO, ENTITY = "wall_1" ) 
BCNODE( VELO, ZERO, ENTITY = "wall_2" ) 
BCNODE( VELO, ZERO, ENTITY = "box_11" ) 
BCNODE( VELO, ZERO, ENTITY = "box_21" ) 
BCNODE( VELO, ZERO, ENTITY = "box_31" ) 
BCNODE( VELO, ZERO, ENTITY = "box_12" ) 
BCNODE( VELO, ZERO, ENTITY = "box_22" ) 
BCNODE( VELO, ZERO, ENTITY = "box_32" ) 
BCNODE( VELO, ZERO, ENTITY = "box_13" ) 
BCNODE( VELO, ZERO, ENTITY = "box_23" ) 
BCNODE( VELO, ZERO, ENTITY = "box_33" ) 
BCNODE( VELO, ZERO, ENTITY = "box_14" ) 
BCNODE( VELO, ZERO, ENTITY = "box_24" ) 
BCNODE( VELO, ZERO, ENTITY = "box_34" ) 
BCNODE( VELO, ZERO, ENTITY = "evap_cover" ) 
BCNODE( VELO, CONSTANT, X = $V_SUPPLY, Y = 0, Z = 0, ENTITY = 
"evap_blow" ) 
/ 
BCNODE( TEMP, CONSTANT = $T_SUPPLY, ENTITY = "evap_blow" ) 
/ 
END 
/ 
CREATE( FISOLV ) 
RUN( FISOLV, BACKGROUND ) 
 

 
F.3 Geometry and Meshing for 3-D Model: GAMBIT Commands 

/ GAMBIT Input File 
/ GEOMETRY and MESHING 
/ PROJECT: Refrigerated Warehouse with Ceiling Type Cooling Units 
/ Three-dimensional (3-D) model, SI units 
/ 
/ 
/ Mesh parameters (based on boundary layer thickness of 0.05 m) 
/ $S = regular mesh size 
/ $R = successive ratio (mesh edges)/growth factor (boundary layers) 
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/ $F = first-row height (boundary layers) 
/ $N = number of rows (boundary layers) 
/ $B = total thickness of boundary layer 
/ 
$S = 0.1 
$B = 0.05 
$N = 3 
$R = 1.5 
$F = $B/(1+$R+$R*$R) 
$M = $N + 2 
/ 
/ Evaporator position index 
$I = 1 
$J = 0 
/ 
/ -------------------------------------              $J 
/ | Simulation # | Position | $I | $J |              | 
/ -------------------------------------         3----8----4 
/ |      0       |  CENTER  |  0 |  0 |         |    |    | 
/ |      1       |    SW    | -1 | -1 |         |    |    | 
/ |      2       |    SE    | +1 | -1 |         6----0----7--$I 
/ |      3       |    NW    | -1 | +1 |         |    |    | 
/ |      4       |    NE    | +1 | +1 |         |    |    | 
/ -------------------------------------         1----5----2 
/ |      5       |    S     |  0 | -1 | 
/ |      6       |    W     | -1 |  0 | 
/ |      7       |    E     | +1 |  0 | 
/ |      8       |    N     |  0 | +1 | 
/ ------------------------------------- 
/ 
/ W = distance from front wall to evaporator face 
/ H = height of evaporator (fan) centerline 
/ 
$W0 = 1.1 
$H0 = 3.3 
$dW = 0.2 
$dH = 0.2 
$W = $W0 + $dW*$I 
$H = $H0 + $dH*$J 
/ 
/ REFRIGERATED SPACE 
/ 
volume create width 7 depth 2 height 4 offset 3.5 1 2 brick 
volume create width 6.9 depth 2 height 3.9 offset 3.5 1 2 brick 
edge create straight "vertex.1" "vertex.9" 
edge create straight "vertex.2" "vertex.10" 
edge create straight "vertex.3" "vertex.11" 
edge create straight "vertex.4" "vertex.12" 
edge create straight "vertex.5" "vertex.13" 
edge create straight "vertex.6" "vertex.14" 
edge create straight "vertex.7" "vertex.15" 
edge create straight "vertex.8" "vertex.16" 



www.manaraa.com

Appendix F (Continued) 

 259

volume create wireframe "edge.1" "edge.2" "edge.3" "edge.4" "edge.25" 
\ 
  "edge.26" "edge.27" "edge.28" "edge.13" "edge.14" "edge.15" 
"edge.16" 
volume create wireframe "edge.2" "edge.5" "edge.7" "edge.10" 
"edge.25" \ 
  "edge.27" "edge.29" "edge.31" "edge.14" "edge.17" "edge.22" 
"edge.19" 
volume create wireframe "edge.3" "edge.6" "edge.8" "edge.11" 
"edge.26" \ 
  "edge.28" "edge.30" "edge.32" "edge.15" "edge.18" "edge.20" 
"edge.23" 
volume create wireframe "edge.9" "edge.10" "edge.11" "edge.12" 
"edge.29" \ 
  "edge.30" "edge.31" "edge.32" "edge.21" "edge.22" "edge.23" 
"edge.24" 
volume delete "volume.1" lowertopology 
/ 
/ PACKAGES 
/ 
coordinate create cartesian oldsystem "c_sys.1" offset 1.7 0 0.1 
axis1 "x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
volume create width 1.2 depth 0.95 height 0.8 offset 0.6 0.475 0.4 
brick 
volume create width 1.3 depth 1.05 height 0.9 offset 0.6 0.475 0.4 
brick 
volume cmove "volume.7" "volume.8" multiple 2 offset 0 0 0.9 
volume cmove "volume.7" "volume.8" "volume.9" "volume.10" "volume.11" 
\ 
  "volume.12" multiple 3 offset 1.3 0 0 
/ 
volume split "volume.2" volumes "volume.8" connected 
volume split "volume.2" volumes "volume.10" connected 
volume split "volume.2" volumes "volume.12" connected 
volume split "volume.2" volumes "volume.14" connected 
volume split "volume.2" volumes "volume.16" connected 
volume split "volume.2" volumes "volume.18" connected 
volume split "volume.2" volumes "volume.20" connected 
volume split "volume.2" volumes "volume.22" connected 
volume split "volume.2" volumes "volume.24" connected 
volume split "volume.2" volumes "volume.26" connected 
volume split "volume.2" volumes "volume.28" connected 
volume split "volume.2" volumes "volume.30" connected 
/ 1 
edge create straight "vertex.17" "vertex.209" 
edge create straight "vertex.18" "vertex.210" 
edge create straight "vertex.19" "vertex.211" 
edge create straight "vertex.20" "vertex.212" 
edge create straight "vertex.21" "vertex.213" 
edge create straight "vertex.22" "vertex.214" 
edge create straight "vertex.23" "vertex.31" 
edge create straight "vertex.24" "vertex.32" 
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volume create wireframe "edge.33" "edge.34" "edge.35" "edge.36" 
"edge.374" \ 
  "edge.375" "edge.376" "edge.377" "edge.322" "edge.323" "edge.324" \ 
  "edge.325" 
volume create wireframe "edge.34" "edge.37" "edge.39" "edge.42" 
"edge.374" \ 
  "edge.376" "edge.378" "edge.380" "edge.323" "edge.326" "edge.51" 
"edge.54" 
volume create wireframe "edge.35" "edge.38" "edge.40" "edge.43" 
"edge.375" \ 
  "edge.377" "edge.379" "edge.381" "edge.324" "edge.327" "edge.52" 
"edge.329" 
volume create wireframe "edge.41" "edge.42" "edge.43" "edge.44" 
"edge.378" \ 
  "edge.379" "edge.380" "edge.381" "edge.328" "edge.54" "edge.329" 
"edge.56" 
volume create wireframe "edge.36" "edge.39" "edge.40" "edge.44" 
"edge.376" \ 
  "edge.377" "edge.380" "edge.381" "edge.325" "edge.51" "edge.52" 
"edge.56" 
/ 2 
edge create straight "vertex.39" "vertex.213" 
edge create straight "vertex.38" "vertex.214" 
edge create straight "vertex.40" "vertex.31" 
edge create straight "vertex.37" "vertex.32" 
edge create straight "vertex.36" "vertex.215" 
edge create straight "vertex.33" "vertex.216" 
edge create straight "vertex.35" "vertex.43" 
edge create straight "vertex.34" "vertex.42" 
volume create wireframe "edge.62" "edge.63" "edge.61" "edge.64" 
"edge.382" \ 
  "edge.383" "edge.384" "edge.385" "edge.328" "edge.54" "edge.329" 
"edge.56" 
volume create wireframe "edge.63" "edge.65" "edge.67" "edge.59" 
"edge.382" \ 
  "edge.384" "edge.386" "edge.388" "edge.54" "edge.330" "edge.79" 
"edge.71" 
volume create wireframe "edge.61" "edge.66" "edge.68" "edge.57" 
"edge.383" \ 
  "edge.385" "edge.387" "edge.389" "edge.329" "edge.331" "edge.80" 
"edge.333" 
volume create wireframe "edge.60" "edge.59" "edge.57" "edge.58" 
"edge.386" \ 
  "edge.387" "edge.388" "edge.389" "edge.332" "edge.71" "edge.333" 
"edge.70" 
volume create wireframe "edge.64" "edge.67" "edge.68" "edge.58" 
"edge.384" \ 
  "edge.385" "edge.388" "edge.389" "edge.56" "edge.79" "edge.80" 
"edge.70" 
/ 3 
edge create straight "vertex.55" "vertex.215" 
edge create straight "vertex.54" "vertex.216" 
edge create straight "vertex.56" "vertex.43" 



www.manaraa.com

Appendix F (Continued) 

 261

edge create straight "vertex.53" "vertex.42" 
edge create straight "vertex.52" "vertex.217" 
edge create straight "vertex.49" "vertex.218" 
edge create straight "vertex.51" "vertex.59" 
edge create straight "vertex.50" "vertex.58" 
volume create wireframe "edge.86" "edge.87" "edge.85" "edge.88" 
"edge.390" \ 
  "edge.391" "edge.392" "edge.393" "edge.332" "edge.71" "edge.333" 
"edge.70" 
volume create wireframe "edge.87" "edge.89" "edge.91" "edge.83" 
"edge.390" \ 
  "edge.392" "edge.394" "edge.396" "edge.71" "edge.334" "edge.103" 
"edge.95" 
volume create wireframe "edge.85" "edge.90" "edge.92" "edge.81" 
"edge.391" \ 
  "edge.393" "edge.395" "edge.397" "edge.333" "edge.335" "edge.104" \ 
  "edge.337" 
volume create wireframe "edge.84" "edge.83" "edge.81" "edge.82" 
"edge.394" \ 
  "edge.395" "edge.396" "edge.397" "edge.336" "edge.95" "edge.337" 
"edge.94" 
volume create wireframe "edge.88" "edge.91" "edge.92" "edge.82" 
"edge.392" \ 
  "edge.393" "edge.396" "edge.397" "edge.70" "edge.103" "edge.104" 
"edge.94" 
/ 4 
edge create straight "vertex.71" "vertex.210" 
edge create straight "vertex.70" "vertex.219" 
edge create straight "vertex.72" "vertex.212" 
edge create straight "vertex.69" "vertex.220" 
edge create straight "vertex.68" "vertex.214" 
edge create straight "vertex.65" "vertex.221" 
edge create straight "vertex.67" "vertex.32" 
edge create straight "vertex.66" "vertex.74" 
volume create wireframe "edge.110" "edge.111" "edge.109" "edge.112" \ 
  "edge.398" "edge.399" "edge.400" "edge.401" "edge.338" "edge.324" \ 
  "edge.339" "edge.340" 
volume create wireframe "edge.111" "edge.113" "edge.115" "edge.107" \ 
  "edge.398" "edge.400" "edge.402" "edge.404" "edge.324" "edge.327" 
"edge.52" \ 
  "edge.329" 
volume create wireframe "edge.109" "edge.114" "edge.116" "edge.105" \ 
  "edge.399" "edge.401" "edge.403" "edge.405" "edge.339" "edge.341" \ 
  "edge.128" "edge.343" 
volume create wireframe "edge.108" "edge.107" "edge.105" "edge.106" \ 
  "edge.402" "edge.403" "edge.404" "edge.405" "edge.342" "edge.329" \ 
  "edge.343" "edge.118" 
volume create wireframe "edge.112" "edge.115" "edge.116" "edge.106" \ 
  "edge.400" "edge.401" "edge.404" "edge.405" "edge.340" "edge.52" 
"edge.128" \ 
  "edge.118" 
/ 5 
edge create straight "vertex.87" "vertex.214" 
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edge create straight "vertex.86" "vertex.221" 
edge create straight "vertex.88" "vertex.32" 
edge create straight "vertex.85" "vertex.74" 
edge create straight "vertex.84" "vertex.216" 
edge create straight "vertex.81" "vertex.222" 
edge create straight "vertex.83" "vertex.42" 
edge create straight "vertex.82" "vertex.90" 
volume create wireframe "edge.134" "edge.135" "edge.133" "edge.136" \ 
  "edge.406" "edge.407" "edge.408" "edge.409" "edge.342" "edge.329" \ 
  "edge.343" "edge.118" 
volume create wireframe "edge.135" "edge.137" "edge.139" "edge.131" \ 
  "edge.406" "edge.408" "edge.410" "edge.412" "edge.329" "edge.331" 
"edge.80" \ 
  "edge.333" 
volume create wireframe "edge.133" "edge.138" "edge.140" "edge.129" \ 
  "edge.407" "edge.409" "edge.411" "edge.413" "edge.343" "edge.344" \ 
  "edge.152" "edge.346" 
volume create wireframe "edge.132" "edge.131" "edge.129" "edge.130" \ 
  "edge.411" "edge.410" "edge.412" "edge.413" "edge.345" "edge.333" \ 
  "edge.346" "edge.142" 
volume create wireframe "edge.136" "edge.139" "edge.140" "edge.130" \ 
  "edge.408" "edge.409" "edge.412" "edge.413" "edge.118" "edge.80" 
"edge.152" \ 
  "edge.142" 
/ 6 
edge create straight "vertex.103" "vertex.216" 
edge create straight "vertex.102" "vertex.222" 
edge create straight "vertex.104" "vertex.42" 
edge create straight "vertex.101" "vertex.90" 
edge create straight "vertex.100" "vertex.218" 
edge create straight "vertex.97" "vertex.223" 
edge create straight "vertex.99" "vertex.58" 
edge create straight "vertex.98" "vertex.106" 
volume create wireframe "edge.158" "edge.159" "edge.157" "edge.160" \ 
  "edge.414" "edge.415" "edge.416" "edge.417" "edge.345" "edge.333" \ 
  "edge.346" "edge.142" 
volume create wireframe "edge.159" "edge.161" "edge.163" "edge.155" \ 
  "edge.414" "edge.416" "edge.418" "edge.420" "edge.333" "edge.335" \ 
  "edge.104" "edge.337" 
volume create wireframe "edge.157" "edge.162" "edge.164" "edge.153" \ 
  "edge.415" "edge.417" "edge.419" "edge.421" "edge.346" "edge.347" \ 
  "edge.176" "edge.349" 
volume create wireframe "edge.156" "edge.155" "edge.153" "edge.154" \ 
  "edge.418" "edge.419" "edge.420" "edge.421" "edge.348" "edge.337" \ 
  "edge.349" "edge.166" 
volume create wireframe "edge.160" "edge.163" "edge.164" "edge.154" \ 
  "edge.416" "edge.417" "edge.420" "edge.421" "edge.142" "edge.104" \ 
  "edge.176" "edge.166" 
/ 7 
edge create straight "vertex.119" "vertex.219" 
edge create straight "vertex.118" "vertex.224" 
edge create straight "vertex.120" "vertex.220" 
edge create straight "vertex.117" "vertex.225" 
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edge create straight "vertex.116" "vertex.221" 
edge create straight "vertex.113" "vertex.226" 
edge create straight "vertex.115" "vertex.74" 
edge create straight "vertex.114" "vertex.122" 
volume create wireframe "edge.182" "edge.183" "edge.181" "edge.184" \ 
  "edge.422" "edge.423" "edge.424" "edge.425" "edge.350" "edge.339" \ 
  "edge.351" "edge.352" 
volume create wireframe "edge.183" "edge.185" "edge.187" "edge.179" \ 
  "edge.422" "edge.424" "edge.426" "edge.428" "edge.339" "edge.341" \ 
  "edge.128" "edge.343" 
volume create wireframe "edge.181" "edge.186" "edge.188" "edge.177" \ 
  "edge.423" "edge.425" "edge.427" "edge.429" "edge.351" "edge.353" \ 
  "edge.200" "edge.355" 
volume create wireframe "edge.180" "edge.179" "edge.177" "edge.178" \ 
  "edge.426" "edge.427" "edge.428" "edge.429" "edge.354" "edge.343" \ 
  "edge.355" "edge.190" 
volume create wireframe "edge.184" "edge.187" "edge.188" "edge.178" \ 
  "edge.424" "edge.425" "edge.428" "edge.429" "edge.352" "edge.128" \ 
  "edge.200" "edge.190" 
/ 8 
edge create straight "vertex.135" "vertex.221" 
edge create straight "vertex.134" "vertex.226" 
edge create straight "vertex.136" "vertex.74" 
edge create straight "vertex.133" "vertex.122" 
edge create straight "vertex.132" "vertex.222" 
edge create straight "vertex.129" "vertex.227" 
edge create straight "vertex.131" "vertex.90" 
edge create straight "vertex.130" "vertex.138" 
volume create wireframe "edge.206" "edge.207" "edge.205" "edge.208" \ 
  "edge.430" "edge.431" "edge.432" "edge.433" "edge.354" "edge.343" \ 
  "edge.355" "edge.190" 
volume create wireframe "edge.207" "edge.209" "edge.211" "edge.203" \ 
  "edge.430" "edge.432" "edge.434" "edge.436" "edge.343" "edge.344" \ 
  "edge.152" "edge.346" 
volume create wireframe "edge.205" "edge.210" "edge.212" "edge.201" \ 
  "edge.431" "edge.433" "edge.435" "edge.437" "edge.355" "edge.356" \ 
  "edge.224" "edge.358" 
volume create wireframe "edge.204" "edge.203" "edge.201" "edge.202" \ 
  "edge.434" "edge.435" "edge.436" "edge.437" "edge.357" "edge.346" \ 
  "edge.358" "edge.214" 
volume create wireframe "edge.208" "edge.211" "edge.212" "edge.202" \ 
  "edge.432" "edge.433" "edge.436" "edge.437" "edge.190" "edge.152" \ 
  "edge.224" "edge.214" 
/ 9 
edge create straight "vertex.151" "vertex.222" 
edge create straight "vertex.150" "vertex.227" 
edge create straight "vertex.152" "vertex.90" 
edge create straight "vertex.149" "vertex.138" 
edge create straight "vertex.148" "vertex.223" 
edge create straight "vertex.145" "vertex.228" 
edge create straight "vertex.147" "vertex.106" 
edge create straight "vertex.146" "vertex.154" 
volume create wireframe "edge.230" "edge.231" "edge.229" "edge.232" \ 
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  "edge.438" "edge.439" "edge.440" "edge.441" "edge.357" "edge.346" \ 
  "edge.358" "edge.214" 
volume create wireframe "edge.231" "edge.233" "edge.235" "edge.227" \ 
  "edge.438" "edge.440" "edge.442" "edge.444" "edge.346" "edge.347" \ 
  "edge.176" "edge.349" 
volume create wireframe "edge.229" "edge.234" "edge.236" "edge.225" \ 
  "edge.439" "edge.441" "edge.443" "edge.445" "edge.358" "edge.359" \ 
  "edge.248" "edge.361" 
volume create wireframe "edge.228" "edge.227" "edge.225" "edge.226" \ 
  "edge.442" "edge.443" "edge.444" "edge.445" "edge.360" "edge.349" \ 
  "edge.361" "edge.238" 
volume create wireframe "edge.232" "edge.235" "edge.236" "edge.226" \ 
  "edge.440" "edge.441" "edge.444" "edge.445" "edge.214" "edge.176" \ 
  "edge.248" "edge.238" 
/ 10 
edge create straight "vertex.167" "vertex.224" 
edge create straight "vertex.166" "vertex.229" 
edge create straight "vertex.168" "vertex.225" 
edge create straight "vertex.165" "vertex.230" 
edge create straight "vertex.164" "vertex.226" 
edge create straight "vertex.161" "vertex.231" 
edge create straight "vertex.163" "vertex.122" 
edge create straight "vertex.162" "vertex.170" 
volume create wireframe "edge.254" "edge.255" "edge.253" "edge.256" \ 
  "edge.446" "edge.447" "edge.448" "edge.449" "edge.362" "edge.351" \ 
  "edge.363" "edge.364" 
volume create wireframe "edge.255" "edge.257" "edge.259" "edge.251" \ 
  "edge.446" "edge.448" "edge.450" "edge.452" "edge.351" "edge.353" \ 
  "edge.200" "edge.355" 
volume create wireframe "edge.253" "edge.258" "edge.260" "edge.249" \ 
  "edge.447" "edge.449" "edge.451" "edge.453" "edge.363" "edge.365" \ 
  "edge.272" "edge.367" 
volume create wireframe "edge.252" "edge.251" "edge.249" "edge.250" \ 
  "edge.450" "edge.451" "edge.452" "edge.453" "edge.366" "edge.355" \ 
  "edge.367" "edge.262" 
volume create wireframe "edge.256" "edge.259" "edge.260" "edge.250" \ 
  "edge.448" "edge.449" "edge.452" "edge.453" "edge.364" "edge.200" \ 
  "edge.272" "edge.262" 
/ 11 
edge create straight "vertex.183" "vertex.226" 
edge create straight "vertex.182" "vertex.231" 
edge create straight "vertex.184" "vertex.122" 
edge create straight "vertex.181" "vertex.170" 
edge create straight "vertex.180" "vertex.227" 
edge create straight "vertex.177" "vertex.232" 
edge create straight "vertex.179" "vertex.138" 
edge create straight "vertex.178" "vertex.186" 
volume create wireframe "edge.278" "edge.279" "edge.277" "edge.280" \ 
  "edge.454" "edge.455" "edge.456" "edge.457" "edge.366" "edge.355" \ 
  "edge.367" "edge.262" 
volume create wireframe "edge.279" "edge.281" "edge.283" "edge.275" \ 
  "edge.454" "edge.456" "edge.458" "edge.460" "edge.355" "edge.356" \ 
  "edge.224" "edge.358" 
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volume create wireframe "edge.277" "edge.282" "edge.284" "edge.273" \ 
  "edge.455" "edge.457" "edge.459" "edge.461" "edge.367" "edge.368" \ 
  "edge.296" "edge.370" 
volume create wireframe "edge.276" "edge.275" "edge.273" "edge.274" \ 
  "edge.458" "edge.459" "edge.460" "edge.461" "edge.369" "edge.358" \ 
  "edge.370" "edge.286" 
volume create wireframe "edge.280" "edge.283" "edge.284" "edge.274" \ 
  "edge.456" "edge.457" "edge.460" "edge.461" "edge.262" "edge.224" \ 
  "edge.296" "edge.286" 
/ 12 
edge create straight "vertex.199" "vertex.227" 
edge create straight "vertex.198" "vertex.232" 
edge create straight "vertex.200" "vertex.138" 
edge create straight "vertex.197" "vertex.186" 
edge create straight "vertex.196" "vertex.228" 
edge create straight "vertex.193" "vertex.233" 
edge create straight "vertex.195" "vertex.154" 
edge create straight "vertex.194" "vertex.202" 
volume create wireframe "edge.302" "edge.303" "edge.301" "edge.304" \ 
  "edge.462" "edge.463" "edge.464" "edge.465" "edge.369" "edge.358" \ 
  "edge.370" "edge.286" 
volume create wireframe "edge.303" "edge.305" "edge.307" "edge.299" \ 
  "edge.462" "edge.464" "edge.466" "edge.468" "edge.358" "edge.359" \ 
  "edge.248" "edge.361" 
volume create wireframe "edge.301" "edge.306" "edge.308" "edge.297" \ 
  "edge.463" "edge.465" "edge.467" "edge.469" "edge.370" "edge.371" \ 
  "edge.320" "edge.373" 
volume create wireframe "edge.300" "edge.299" "edge.297" "edge.298" \ 
  "edge.466" "edge.467" "edge.468" "edge.469" "edge.372" "edge.361" \ 
  "edge.373" "edge.310" 
volume create wireframe "edge.304" "edge.307" "edge.308" "edge.298" \ 
  "edge.464" "edge.465" "edge.468" "edge.469" "edge.286" "edge.248" \ 
  "edge.320" "edge.310" 
/ 
/ EVAPORATOR 
/ 
coordinate create cartesian oldsystem "c_sys.1" offset $W 0 $H axis1 
"x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
face create width 0.6 height 0.4 offset -0.2 0 0 zxplane rectangle 
face create width 0.4 height 0.4 offset -0.2 0 0 zxplane rectangle 
face create width 0.7 height 0.5 offset -0.2 0 0 zxplane rectangle 
face create width 0.5 height 0.9 offset -0.2 0 0 zxplane rectangle 
face create width 0.3 height 0.7 offset -0.2 0 0 zxplane rectangle 
/ 
face create width 4 height 8 offset 0.25 0 0 yzplane rectangle 
volume split "volume.2" faces "face.355" connected 
/ 
face split "face.352" connected face "face.350" 
face subtract "face.352" faces "face.353" keeptool 
face split "face.353" connected face "face.351" 
face subtract "face.353" faces "face.350" 
face split "face.353" connected keeptool face "face.354" 
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face split "face.364" connected face "face.354" 
face delete "face.351" lowertopology 
/ 
volume create translate "face.362" "face.352" "face.353" "face.364" \ 
  "face.365" "face.354" vector 0 2 0 
volume split "volume.2" volumes "volume.104" connected bientity 
volume split "volume.2" volumes "volume.105" connected bientity 
volume split "volume.2" volumes "volume.106" connected bientity 
volume split "volume.2" volumes "volume.107" connected bientity 
volume split "volume.114" volumes "volume.108" connected bientity 
volume split "volume.114" volumes "volume.109" connected bientity 
volume delete "volume.114" lowertopology 
volume delete "volume.8" "volume.10" "volume.12" "volume.14" 
"volume.16" \ 
  "volume.18" "volume.20" "volume.22" "volume.24" "volume.26" 
"volume.28" \ 
  "volume.30" lowertopology 
/ 
/ 
/ MESHING 
/ 
default set "MESH.NODES.EDGE" numeric 2 
default set "MESH.NODES.HEX" numeric 8 
/ 
/ MESH UNOCCUPIED SPACE 
/ 
volume mesh "volume.2" "volume.103" submap size $S 
/ 
/ MESH FLOOR, WALLS, CEILING 
/ 
edge mesh "edge.25" "edge.26" "edge.27" "edge.28" "edge.29" "edge.30" 
\ 
  "edge.31" "edge.32" successive ratio1 $R intervals $N 
volume mesh "volume.3" "volume.4" "volume.5" "volume.6" map 
/ 
/ MESH PACKAGE ENVELOPES 
/ 
edge mesh "edge.374" "edge.375" "edge.376" "edge.377" "edge.378" 
"edge.379" \ 
  "edge.380" "edge.381" "edge.382" "edge.383" "edge.384" "edge.385" \ 
  "edge.386" "edge.387" "edge.388" "edge.389" "edge.390" "edge.391" \ 
  "edge.392" "edge.393" "edge.394" "edge.395" "edge.396" "edge.397" \ 
  "edge.398" "edge.399" "edge.400" "edge.401" "edge.402" "edge.403" \ 
  "edge.404" "edge.405" "edge.406" "edge.407" "edge.408" "edge.409" \ 
  "edge.410" "edge.411" "edge.412" "edge.413" "edge.414" "edge.415" \ 
  "edge.416" "edge.417" "edge.418" "edge.419" "edge.420" "edge.421" \ 
  "edge.422" "edge.423" "edge.424" "edge.425" "edge.426" "edge.427" \ 
  "edge.428" "edge.429" "edge.430" "edge.431" "edge.432" "edge.433" \ 
  "edge.434" "edge.435" "edge.436" "edge.437" "edge.438" "edge.439" \ 
  "edge.440" "edge.441" "edge.442" "edge.443" "edge.444" "edge.445" \ 
  "edge.446" "edge.447" "edge.448" "edge.449" "edge.450" "edge.451" \ 
  "edge.452" "edge.453" "edge.454" "edge.455" "edge.456" "edge.457" \ 
  "edge.458" "edge.459" "edge.460" "edge.461" "edge.462" "edge.463" \ 
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  "edge.464" "edge.465" "edge.466" "edge.467" "edge.468" "edge.469" \ 
  successive ratio1 $R intervals $N 
/ 
volume mesh "volume.43" "volume.44" "volume.45" "volume.46" 
"volume.47" \ 
  "volume.48" "volume.49" "volume.50" "volume.51" "volume.52" 
"volume.53" \ 
  "volume.54" "volume.55" "volume.56" "volume.57" "volume.58" 
"volume.59" \ 
  "volume.60" "volume.61" "volume.62" "volume.63" "volume.64" 
"volume.65" \ 
  "volume.66" "volume.67" "volume.68" "volume.69" "volume.70" 
"volume.71" \ 
  "volume.72" "volume.73" "volume.74" "volume.75" "volume.76" 
"volume.77" \ 
  "volume.78" "volume.79" "volume.80" "volume.81" "volume.82" 
"volume.83" \ 
  "volume.84" "volume.85" "volume.86" "volume.87" "volume.88" 
"volume.89" \ 
  "volume.90" "volume.91" "volume.92" "volume.93" "volume.94" 
"volume.95" \ 
  "volume.96" "volume.97" "volume.98" "volume.99" "volume.100" 
"volume.101" \ 
  "volume.102" map size $S 
/ 
/ MESH PACKAGES 
/ 
volume mesh "volume.7" "volume.9" "volume.11" "volume.13" "volume.15" 
\ 
  "volume.17" "volume.19" "volume.21" "volume.23" "volume.25" 
"volume.27" \ 
  "volume.29" map 
/ 
/ MESH EVAPORATOR INLET/OUTLET 
/ 
edge mesh "edge.544" "edge.541" "edge.548" "edge.545" successive 
ratio1 1 \ 
  intervals $M 
blayer create first $F growth $R rows ($N-1) transition 1 trows 0 
blayer attach "b_layer.1" face "face.416" "face.416" "face.416" 
"face.418" \ 
  "face.418" "face.418" "face.417" "face.417" "face.417" "face.419" \ 
  "face.419" "face.419" edge "edge.635" "edge.640" "edge.636" 
"edge.655" \ 
  "edge.650" "edge.656" "edge.638" "edge.643" "edge.637" "edge.658" \ 
  "edge.653" "edge.657" 
blayer create first $F growth $R rows ($N-1) transition 1 trows 0 
blayer attach "b_layer.2" face "face.357" "face.420" "face.357" 
"face.420" \ 
  "face.427" "face.421" "face.427" "face.421" edge "edge.673" 
"edge.689" \ 
  "edge.665" "edge.681" "edge.690" "edge.674" "edge.682" "edge.666" 
/ 
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face modify "face.416" side "vertex.350" 
face modify "face.416" side "vertex.351" 
face modify "face.416" side "vertex.354" 
face modify "face.416" side "vertex.355" 
face modify "face.418" side "vertex.362" 
face modify "face.418" side "vertex.363" 
face modify "face.418" side "vertex.358" 
face modify "face.418" side "vertex.359" 
face modify "face.357" side "vertex.300" 
face modify "face.357" side "vertex.298" 
face modify "face.357" side "vertex.380" 
face modify "face.357" side "vertex.374" 
face modify "face.420" side "vertex.305" 
face modify "face.420" side "vertex.303" 
face modify "face.420" side "vertex.388" 
face modify "face.420" side "vertex.382" 
face mesh "face.416" "face.418" "face.357" "face.420" map 
volume mesh "volume.104" cooper source "face.417" "face.416" 
volume mesh "volume.105" cooper source "face.419" "face.418" 
volume mesh "volume.106" cooper source "face.357" "face.421" 
volume mesh "volume.107" cooper source "face.420" "face.427" 
volume mesh "volume.108" "volume.109" map 
/ 
/ PHYSICAL SETTINGS 
/ 
solver select "FIDAP" 
/ 
/ SUBDOMAIN SETTINGS 
/ 
physics create "products" ctype "SOLID" volume "volume.7" "volume.9" 
\ 
  "volume.11" "volume.13" "volume.15" "volume.17" "volume.19" 
"volume.21" \ 
  "volume.23" "volume.25" "volume.27" "volume.29" 
physics create "air" ctype "FLUID" volume "volume.3" "volume.4" 
"volume.5" \ 
  "volume.6" "volume.104" "volume.43" "volume.44" "volume.45" 
"volume.46" \ 
  "volume.47" "volume.48" "volume.49" "volume.50" "volume.51" 
"volume.52" \ 
  "volume.53" "volume.54" "volume.55" "volume.56" "volume.57" 
"volume.58" \ 
  "volume.59" "volume.60" "volume.61" "volume.62" "volume.63" 
"volume.64" \ 
  "volume.65" "volume.66" "volume.67" "volume.68" "volume.69" 
"volume.70" \ 
  "volume.71" "volume.72" "volume.73" "volume.74" "volume.75" 
"volume.76" \ 
  "volume.77" "volume.78" "volume.79" "volume.80" "volume.81" 
"volume.82" \ 
  "volume.83" "volume.84" "volume.85" "volume.86" "volume.87" 
"volume.88" \ 
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  "volume.89" "volume.90" "volume.91" "volume.92" "volume.93" 
"volume.94" \ 
  "volume.95" "volume.96" "volume.97" "volume.98" "volume.99" 
"volume.100" \ 
  "volume.101" "volume.102" "volume.103" "volume.105" "volume.106" \ 
  "volume.108" "volume.107" "volume.2" "volume.109" 
/ 
/ BOUNDARY SETTINGS 
/ 
physics create "floor" btype "WALL" face "face.1" 
physics create "ceiling" btype "WALL" face "face.6" 
physics create "walls" btype "WALL" face "face.3" "face.4" 
/ 
physics create "containers" btype "WALL" face "face.25" "face.27" 
"face.28" \ 
  "face.30" "face.29" "face.38" "face.40" "face.42" "face.37" 
"face.41" \ 
  "face.50" "face.52" "face.54" "face.49" "face.53" "face.62" 
"face.64" \ 
  "face.66" "face.61" "face.65" "face.74" "face.76" "face.78" 
"face.73" \ 
  "face.77" "face.86" "face.88" "face.90" "face.85" "face.89" 
"face.98" \ 
  "face.100" "face.102" "face.97" "face.101" "face.110" "face.112" 
"face.114" \ 
  "face.109" "face.113" "face.122" "face.124" "face.126" "face.121" \ 
  "face.125" "face.134" "face.136" "face.138" "face.133" "face.137" \ 
  "face.146" "face.148" "face.150" "face.145" "face.149" "face.158" \ 
  "face.160" "face.162" "face.157" "face.161" 
/ 
physics create "evap_cover" btype "WALL" face "face.395" "face.370" \ 
  "face.373" "face.371" "face.406" "face.387" "face.382" "face.379" \ 
  "face.383" "face.398" 
physics create "evap_blow" btype "PLOT" face "face.399" "face.413" 
"face.405" 
physics create "evap_suct" btype "PLOT" face "face.388" "face.410" 
"face.394" 
/ 
physics create "symmetry" btype "PLOT" face "face.358" "face.425" 
"face.16" \ 
  "face.24" "face.21" "face.18" "face.417" "face.419" "face.421" 
"face.427" \ 
  "face.11" "face.431" "face.204" "face.424" "face.13" "face.23" 
"face.17" \ 
  "face.20" "face.416" "face.418" "face.357" "face.420" "face.430" 
"face.426" \ 
  "face.206" "face.210" "face.213" "face.216" "face.218" "face.222" \ 
  "face.225" "face.228" "face.234" "face.237" "face.240" "face.242" \ 
  "face.246" "face.249" "face.252" "face.254" "face.258" "face.261" \ 
  "face.264" "face.266" "face.270" "face.273" "face.276" "face.278" \ 
  "face.282" "face.285" "face.288" "face.290" "face.294" "face.297" \ 
  "face.300" "face.302" "face.306" "face.309" "face.312" "face.314" \ 
  "face.318" "face.321" "face.324" "face.326" "face.330" "face.333" \ 
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  "face.336" "face.338" "face.342" "face.345" "face.348" "face.230" \ 
  "face.26" "face.39" "face.51" "face.63" "face.75" "face.87" 
"face.99" \ 
  "face.111" "face.123" "face.135" "face.147" "face.159" 
/ 
/ EXPORT MESH 
/ 
$ID = GETIDENT() 
$NEUTRALFILE = $ID + ".FDNEUT" 
export fidap $NEUTRALFILE 
 

 
F.4 Simulation Settings for 3-D Model: FIDAP Commands 

/ FIDAP Input File 
/ SIMULATION SETTINGS 
/ PROJECT: Refrigerated Warehouse with Ceiling Type Cooling Units 
/ Three-dimensional (3-D) model, SI units 
/ 
/ 
/ Neutral file name 
$NEUTRALFILE = "mesh.FDNEUT" 
/ 
/          CONVERSION OF NEUTRAL FILE TO FIDAP Database 
/ 
FICONV( NEUTRAL ) 
INPUT( FILE=$NEUTRALFILE ) 
OUTPUT( DELETE ) 
END 
/ 
TITLE 
Refrigerated Warehouse, 3-D model 
/ 
/          CONSTANTS 
/ 
$V_SUPPLY = 0.5 
$T_SUPPLY = 0 
$F_LIGHT = 10 
/ 
IF ( $T_SUPPLY .EQ. 0 ) 
$T_MIN = 1.E-20 
ELSE 
$T_MIN = $T_SUPPLY 
ENDIF 
/ 
$G = 9.8 
$RHO = 1.293 
$MU = 17.20E-6 
$K = 24.07E-3 
$CP = 1004. 
$BETA = 3.663E-3 
$TREF = 0 
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/ 
$RHO_2 = 840 
$K_2 = 0.52 
$CP_2 = 3.79E3 
/ 
$H_CCF = 1.18 
$T_GROUND = 15 
$H_PUR = 0.23 
$T_AMBIENT = 35 
$T_CEILING = $T_AMBIENT + $F_LIGHT/$H_PUR 
/ 
/ ABBREVIATIONS 
/ CCF: concrete floor 
/ PUR: polyurethane 
/ 
FIPREP 
/ 
/          PROBLEM SETUP 
/ 
GRAVITY( MAGNITUDE = $G ) 
PROBLEM( 3-D, TURBULENT, NONLINEAR, BUOYANCY ) 
EXECUTION( NEWJOB ) 
PRINTOUT( NONE ) 
DATAPRINT( NONE ) 
/ 
/          CONTINUUM ENTITIES 
/ 
ENTITY( NAME = "air", FLUID, PROPERTY = "air" ) 
ENTITY( NAME = "products", SOLID, PROPERTY = "products" ) 
/ 
/          BOUNDARY ENTITIES 
/ 
ENTITY( NAME = "symmetry", PLOT ) 
ENTITY( NAME = "floor", CONVECTION, MCNV = "floor" ) 
ENTITY( NAME = "ceiling", CONVECTION, MCNV = "ceiling" ) 
ENTITY( NAME = "walls", CONVECTION, MCNV = "walls" ) 
ENTITY( NAME = "containers", WALL, ATTACH = "air", NATTACH = 
"products" ) 
ENTITY( NAME = "evap_cover", WALL ) 
ENTITY( NAME = "evap_blow", PLOT ) 
ENTITY( NAME = "evap_suct", PLOT ) 
/ 
/          SOLUTION PARAMETERS 
/ 
PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 
SOLUTION( SEGREGATED = 100, CR, CGS, VELCONV = .01, NCGC = 1.E-6, 
SCGC = 1.E-6, SCHANGE = .0 ) 
RELAX( HYBRID ) 
OPTIONS( UPWINDING ) 
POSTPROCESS( RESIDUAL ) 
CLIPPING( MINIMUM ) 
0 0 0 0 $T_MIN 
/ 
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/          MATERIAL PROPERTIES 
/ 
/ Partial list of Material Properties data 
/ 
DENSITY( SET = "air", CONSTANT = $RHO ) 
VISCOSITY( SET = "air", CONSTANT = $MU, MIXLENGTH ) 
CONDUCTIVITY( SET = "air", CONSTANT = $K ) 
SPECIFICHEAT( SET = "air", CONSTANT = $CP ) 
VOLUMEXPANSION( SET = "air", CONSTANT = $BETA, REFTEMP = $TREF ) 
/ 
DENSITY( SET = "products", CONSTANT = $RHO_2 ) 
CONDUCTIVITY( SET = "products", CONSTANT = $K_2 ) 
SPECIFICHEAT( SET = "products", CONSTANT = $CP_2 ) 
/ 
HTRANSFER( SET = "floor" , CONSTANT = $H_CCF, REFTEMP = $T_GROUND ) 
HTRANSFER( SET = "ceiling" , CONSTANT = $H_PUR, REFTEMP = $T_CEILING) 
HTRANSFER( SET = "walls" , CONSTANT = $H_PUR, REFTEMP = $T_AMBIENT ) 
/ 
/          INITIAL AND BOUNDARY CONDITIONS 
/ 
BCNODE( VELO, ZERO, ENTITY = "evap_cover" ) 
BCNODE( VELO, ZERO, ENTITY = "floor" ) 
BCNODE( VELO, ZERO, ENTITY = "ceiling" ) 
BCNODE( VELO, ZERO, ENTITY = "walls" ) 
BCNODE( VELO, ZERO, ENTITY = "containers" ) 
BCNODE( UY, ZERO, ENTITY = "symmetry" ) 
BCNODE( VELO, CONSTANT, X = $V_SUPPLY, Y = 0, Z = 0, ENTITY = 
"evap_blow" ) 
/ 
BCNODE( TEMP, CONSTANT = $T_SUPPLY, ENTITY = "evap_blow" ) 
/ 
END 
/ 
CREATE( FISOLV ) 
RUN( FISOLV, BACKGROUND ) 
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Appendix G: FIDAP Preprocessing Input for Chapter 8 

G.1 Geometry and Meshing: FIDAP Commands 

/ FIDAP Input File 
/ GEOMETRY and MESHING 
/ PROJECT: Air-Conditioned Room with Ceiling Fan 
/ Two-dimensional (2-D) model, SI units 
/ NOTE: The parameters $L1 to $L19 are NOT the same as the dimensions 
/ L1 to L12 presented in the text. 
 
 
TITLE 
Air-conditioned room with ceiling fan, 2-D model 
 
// FI-GEN 
FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, MEDG = 1, 
MLOO = 1, 
MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL = 1, COOR = 1 ) 
 
/ Width of room 
$L1  = 3.70 
/ Distance of fan center from left wall 
$L2  = 1.85 
/ Width of fan site 
$L3  = 1.70 
/ Distance of body center from fan center 
$L4  = 0 
/ Width of body 
$L5  = 0.26 
/ Thickness of air zone around body 
$L6  = 0.10 
/ Diameter of motor-lights neck 
$L7  = 0.10 
/ Span from neck of motor-lights 
$L8  = 0.10 
/ Thickness of air zone around motor-lights 
$L9  = 0.05 
/ Width of fan blade span, L10 < L3 
$L10 = 1.07 
 
/ Height of room 
$L11 = 2.70 
/ Height of inlet (bottom edge) from floor 
$L12 = 2.33 
/ Size of inlet 
$L13 = 0.20 
/ Height of outlet (bottom edge) from floor 
$L14 = 0.20 
/ Size of outlet 
$L15 = 0.25 
/ Gap from floor to body 
$L16 = 0.20 
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/ Height of body 
$L17 = 1.70 
/ Height of fan plane 
$L18 = 2.30 
/ Size of smoke source 
$L19 = 0.05 
 
// COORDINATES 
$NX = 18 
DECLARE $XP[1:$NX] 
$XP[1]  = 0 
$XP[2]  = $XP[1]+$L1 
$XP[3]  = $XP[1]+$L2 
$XP[4]  = $XP[3]-$L3/2 
$XP[5]  = $XP[3]+$L3/2 
$XP[6]  = $XP[3]+$L4 
$XP[7]  = $XP[6]-$L5/2 
$XP[8]  = $XP[6]+$L5/2 
$XP[9]  = $XP[7]-$L6 
$XP[10] = $XP[8]+$L6 
$XP[11] = $XP[3]-$L7/2 
$XP[12] = $XP[3]+$L7/2 
$XP[13] = $XP[11]-$L8 
$XP[14] = $XP[12]+$L8 
$XP[15] = $XP[13]-$L9 
$XP[16] = $XP[14]+$L9 
$XP[17] = $XP[3]-$L10/2 
$XP[18] = $XP[3]+$L10/2 
 
$NY = 19 
DECLARE $YP[1:$NY] 
$YP[1]  = 0 
$YP[2]  = $YP[1]+$L11 
$YP[3]  = $YP[1]+$L12 
$YP[4]  = $YP[3]+$L13 
$YP[5]  = $YP[1]+$L14 
$YP[6]  = $YP[5]+$L15 
$YP[7]  = $YP[1]+$L16 
$YP[8]  = $YP[1]+$L17 
$YP[9]  = $YP[1]+$L18 
$YP[10] = $YP[9]+$L9 
$YP[11] = $YP[10]+0.10 
$YP[12] = $YP[11]+$L9 
$YP[13] = $YP[9]-$L9 
$YP[14] = $YP[13]-0.10 
$YP[15] = $YP[14]-0.10 
$YP[16] = $YP[15]-$L9 
$YP[17] = $YP[8]+$L6 
$YP[18] = $YP[8]-$L5/2 
$YP[19] = $YP[18]-$L19 
 
// Lengths 
$NL = 71 
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DECLARE $L[1:$NL] 
 
$L[1]  = $YP[3]-$YP[1] 
$L[2]  = $YP[4]-$YP[3] 
$L[3]  = $YP[2]-$YP[4] 
 
$L[4]  = $XP[4]-$XP[1] 
$L[5]  = $XP[5]-$XP[4] 
$L[6]  = $XP[2]-$XP[5] 
 
$L[7]  = $YP[2]-$YP[6] 
$L[8]  = $YP[6]-$YP[5] 
$L[9]  = $YP[5]-$YP[1] 
 
$L[10] = $L[6] 
$L[11] = $L[5] 
$L[12] = $L[4] 
 
$L[13] = $YP[7]-$YP[1] 
$L[14] = $YP[17]-$YP[7] 
$L[15] = $YP[16]-$YP[17] 
$L[16] = $YP[9]-$YP[16] 
$L[17] = $YP[12]-$YP[9] 
$L[18] = $YP[2]-$YP[12] 
 
$L[19] = $L[13] 
$L[20] = $L[14] 
$L[21] = $L[15] 
$L[22] = $L[16] 
$L[23] = $L[17] 
$L[24] = $L[18] 
 
$L[25] = $XP[9]-$XP[4] 
$L[26] = $XP[7]-$XP[9] 
$L[27] = $XP[8]-$XP[7] 
$L[28] = $XP[10]-$XP[8] 
$L[29] = $XP[5]-$XP[10] 
 
$L[30] = $L[25] 
$L[31] = $XP[10]-$XP[9] 
$L[32] = $L[29] 
 
$L[33] = $XP[15]-$XP[4] 
$L[34] = $XP[16]-$XP[15] 
$L[35] = $XP[5]-$XP[16] 
 
$L[36] = $L[33] 
$L[37] = $L[34] 
$L[38] = $L[35] 
 
$L[39] = $YP[19]-$YP[7] 
$L[40] = $YP[18]-$YP[19] 
$L[41] = ($XP[8]-$XP[7])*PI/2 
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$L[42] = $L[40] 
$L[43] = $L[39] 
$L[44] = $L[14] 
$L[45] = $L[20] 
 
$L[46] = ($YP[15]-$YP[13])*PI/2 
$L[47] = $XP[12]-$XP[11] 
$L[48] = $L[46] 
$L[49] = $YP[9]-$YP[13] 
$L[50] = $YP[10]-$YP[9] 
$L[51] = $XP[14]-$XP[12] 
$L[52] = $YP[11]-$YP[10] 
$L[53] = $XP[14]-$XP[13] 
$L[54] = $L[52] 
$L[55] = $L[51] 
$L[56] = $L[50] 
$L[57] = $L[49] 
 
$L[58] = $L[16] 
$L[59] = $L[17] 
$L[60] = $L[22] 
$L[61] = $L[23] 
 
$L[62] = $XP[3]-$YP[15] 
$L[63] = $XP[15]-$XP[17] 
$L[64] = $XP[17]-$XP[4] 
$L[65] = $L[62] 
$L[66] = $L[63] 
$L[67] = $L[64] 
 
$L[68] = $YP[18]-$YP[7] 
$L[69] = $YP[17]-$YP[18] 
$L[70] = $L[68] 
$L[71] = $L[69] 
 
// Mesh Intervals and Grading Factors 
DECLARE $M[1:$NL] 
DECLARE $R1[1:$NL] 
DECLARE $R2[1:$NL] 
 
$Lm = 0.025 
$Lb = 0.005 
 
DO( $I = 1, $I .LE. $NL ) 
$M[$I] = 2*INT($L[$I]/2/$Lm+0.5) 
IF($M[$I] .LT. 16 ) 
$M[$I] = 16 
ENDIF 
ENDDO 
 
$M[46] = 4*$M[62] 
$M[58] = $M[46]/2 
$M[48] = 4*$M[65] 
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$M[60] = $M[48]/2 
$M[34] = $M[47]+$M[46]/4+$M[48]/4 
 
$M[51] = $M[65] 
$M[52] = $M[61] 
$M[53] = $M[37] 
$M[54] = $M[59] 
$M[55] = $M[62] 
 
$M[16] = $M[58] 
$M[33] = $M[63]+$M[64] 
$M[22] = $M[60] 
$M[35] = $M[66]+$M[67] 
 
$M[17] = $M[59] 
$M[36] = $M[63]+$M[64] 
$M[23] = $M[61] 
$M[38] = $M[66]+$M[67] 
$M[5]  = $M[36]+$M[37]+$M[38] 
 
$M[31] = $M[33]+$M[34]+$M[35]-$M[30]-$M[32] 
$M[41] = 2*$M[31] 
$M[69] = $M[41]/4 
$M[71] = $M[41]/4 
$M[68] = $M[39]+$M[40] 
$M[70] = $M[42]+$M[43] 
$M[14] = $M[68]+$M[69] 
$M[20] = $M[70]+$M[71] 
 
$M[25] = $M[30] 
$M[29] = $M[32] 
$M[11] = $M[25]+$M[26]+$M[27]+$M[28]+$M[29] 
 
$M[1]  = $M[13]+$M[14]+$M[15]+$M[16]+$M[17]+$M[18]-$M[2]-$M[3] 
$M[7]  = $M[19]+$M[20]+$M[21]+$M[22]+$M[23]+$M[24]-$M[8]-$M[9] 
 
// ADD POINTS 
 
POINT( ADD, COOR ) 
 
$XP[1] $YP[1] 
$XP[1] $YP[3] 
$XP[1] $YP[4] 
$XP[1] $YP[2] 
$XP[4] $YP[2] 
$XP[5] $YP[2] 
$XP[2] $YP[2] 
$XP[2] $YP[6] 
$XP[2] $YP[5] 
$XP[2] $YP[1] 
$XP[5] $YP[1] 
$XP[4] $YP[1] 
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$XP[4] $YP[7] 
$XP[4] $YP[17] 
$XP[4] $YP[16] 
$XP[4] $YP[9] 
$XP[4] $YP[12] 
 
$XP[5] $YP[7] 
$XP[5] $YP[17] 
$XP[5] $YP[16] 
$XP[5] $YP[9] 
$XP[5] $YP[12] 
 
$XP[9] $YP[7] 
$XP[7] $YP[7] 
$XP[8] $YP[7] 
$XP[10] $YP[7] 
 
$XP[9] $YP[17] 
$XP[10] $YP[17] 
 
$XP[15] $YP[16] 
$XP[16] $YP[16] 
 
$XP[15] $YP[12] 
$XP[16] $YP[12] 
 
$XP[7] $YP[19] 
$XP[7] $YP[18] 
$XP[6] $YP[8] 
$XP[8] $YP[18] 
$XP[8] $YP[19] 
 
$XP[11] $YP[13] 
$XP[13] $YP[14] 
$XP[11] $YP[15] 
$XP[12] $YP[15] 
$XP[14] $YP[14] 
$XP[12] $YP[13] 
$XP[12] $YP[9] 
$XP[12] $YP[10] 
$XP[14] $YP[10] 
$XP[14] $YP[11] 
$XP[13] $YP[11] 
$XP[13] $YP[10] 
$XP[11] $YP[10] 
$XP[11] $YP[9] 
 
$XP[15] $YP[9] 
$XP[17] $YP[9] 
$XP[16] $YP[9] 
$XP[18] $YP[9] 
 
$XP[9] $YP[18] 
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$XP[10] $YP[18] 
 
 
// ADD LINES 
 
POINT( SELE, ID) 
1 12 
1 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
12 17 
5 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
11 
18 22 
6 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
13 
23 26 
18 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
14 
27 28 
19 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
15 
29 30 
20 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
17 
31 32 
22 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
24 
33 34 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
34 36 
CURVE( ADD, ARC, 3POINTS ) 
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POINT( SELE, ID) 
36 37 
25 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
23 
27 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
26 
28 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
38 40 
CURVE( ADD, ARC, 3POINTS ) 
 
POINT( SELE, ID) 
40 41 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
41 43 
CURVE( ADD, ARC, 3POINTS ) 
 
POINT( SELE, ID) 
43 51 
38 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
29 
52 
31 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
30 
54 
32 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
51 53 
16 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID) 
44 
54 55 
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21 
CURVE( ADD, LINE ) 
 
CURVE( SELE, ID = 44 ) 
POINT( SELE, ID = 56 ) 
CURVE( SPLIT, KEEP ) 
 
CURVE( SELE, ID = 45 ) 
POINT( SELE, ID = 57 ) 
CURVE( SPLIT, KEEP ) 
 
// ADD SURFACES 
 
POINT( SELE, ID ) 
4 
7 
1 
10 
SURFACE( ADD, POINT, ROWW = 2, NOADCURVES, INVISIBLE ) 
 
// ADD MESH EDGES 
 
CURVE( SELE, ID = 1 ) 
MEDGE( ADD, FRTL, INTE = $M[1], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 2 ) 
MEDGE( ADD, FRTL, INTE = $M[2], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 3 ) 
MEDGE( ADD, FRTL, INTE = $M[3], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 4 ) 
MEDGE( ADD, FRTL, INTE = $M[4], RATI = $Lb, 2RAT = $Lm, PCEN = 0 ) 
CURVE( SELE, ID = 5 ) 
MEDGE( ADD, SUCC, INTE = $M[5], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 6 ) 
MEDGE( ADD, FRTL, INTE = $M[6], RATI = $Lm, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 7 ) 
MEDGE( ADD, FRTL, INTE = $M[7], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 8 ) 
MEDGE( ADD, FRTL, INTE = $M[8], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 9 ) 
MEDGE( ADD, FRTL, INTE = $M[9], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 10 ) 
MEDGE( ADD, FRTL, INTE = $M[10], RATI = $Lb, 2RAT = $Lm, PCEN = 0 ) 
 
CURVE( SELE, ID = 11 ) 
MEDGE( ADD, SUCC, INTE = $M[11], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 12 ) 
MEDGE( ADD, FRTL, INTE = $M[12], RATI = $Lm, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 13 ) 
MEDGE( ADD, FRTL, INTE = $M[13], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 14 ) 
MEDGE( ADD, SUCC, INTE = $M[14], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 15 ) 
MEDGE( ADD, SUCC, INTE = $M[15], RATI = 0, 2RAT = 0, PCEN = 0 ) 
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CURVE( SELE, ID = 16 ) 
MEDGE( ADD, SUCC, INTE = $M[16], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 17 ) 
MEDGE( ADD, SUCC, INTE = $M[17], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 18 ) 
MEDGE( ADD, FRTL, INTE = $M[18], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 19 ) 
MEDGE( ADD, FRTL, INTE = $M[19], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 20 ) 
MEDGE( ADD, SUCC, INTE = $M[20], RATI = 0, 2RAT = 0, PCEN = 0 ) 
 
CURVE( SELE, ID = 21 ) 
MEDGE( ADD, SUCC, INTE = $M[21], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 22 ) 
MEDGE( ADD, SUCC, INTE = $M[22], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 23 ) 
MEDGE( ADD, SUCC, INTE = $M[23], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 24 ) 
MEDGE( ADD, FRTL, INTE = $M[24], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 25 ) 
MEDGE( ADD, SUCC, INTE = $M[25], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 26 ) 
MEDGE( ADD, FRST, INTE = $M[26], RATI = 3, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 27 ) 
MEDGE( ADD, SUCC, INTE = $M[27], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 28 ) 
MEDGE( ADD, LSTF, INTE = $M[28], RATI = 3, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 29 ) 
MEDGE( ADD, SUCC, INTE = $M[29], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 30 ) 
MEDGE( ADD, SUCC, INTE = $M[30], RATI = 0, 2RAT = 0, PCEN = 0 ) 
 
CURVE( SELE, ID = 31 ) 
MEDGE( ADD, SUCC, INTE = $M[31], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 32 ) 
MEDGE( ADD, SUCC, INTE = $M[32], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 33 ) 
MEDGE( ADD, SUCC, INTE = $M[33], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 34 ) 
MEDGE( ADD, SUCC, INTE = $M[34], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 35 ) 
MEDGE( ADD, SUCC, INTE = $M[35], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 36 ) 
MEDGE( ADD, SUCC, INTE = $M[36], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 37 ) 
MEDGE( ADD, SUCC, INTE = $M[37], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 38 ) 
MEDGE( ADD, SUCC, INTE = $M[38], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 39 ) 
MEDGE( ADD, FRTL, INTE = $M[39], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 40 ) 
MEDGE( ADD, SUCC, INTE = $M[40], RATI = 0, 2RAT = 0, PCEN = 0 ) 
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CURVE( SELE, ID = 41 ) 
MEDGE( ADD, SUCC, INTE = $M[41], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 42 ) 
MEDGE( ADD, SUCC, INTE = $M[42], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 43 ) 
MEDGE( ADD, FRTL, INTE = $M[43], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 44 ) 
MEDGE( ADD, SUCC, INTE = $M[44], RATI = 0, 2RAT = 0, PCEN = 0, 
INVISIBLE ) 
CURVE( SELE, ID = 45 ) 
MEDGE( ADD, SUCC, INTE = $M[45], RATI = 0, 2RAT = 0, PCEN = 0, 
INVISIBLE ) 
CURVE( SELE, ID = 46 ) 
MEDGE( ADD, SUCC, INTE = $M[46], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 47 ) 
MEDGE( ADD, SUCC, INTE = $M[47], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 48 ) 
MEDGE( ADD, SUCC, INTE = $M[48], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 49 ) 
MEDGE( ADD, LSTF, INTE = $M[49], RATI = 2, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 50 ) 
MEDGE( ADD, FRST, INTE = $M[50], RATI = 2, 2RAT = 0, PCEN = 0 ) 
 
CURVE( SELE, ID = 51 ) 
MEDGE( ADD, SUCC, INTE = $M[51], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 52 ) 
MEDGE( ADD, SUCC, INTE = $M[52], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 53 ) 
MEDGE( ADD, SUCC, INTE = $M[53], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 54 ) 
MEDGE( ADD, SUCC, INTE = $M[54], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 55 ) 
MEDGE( ADD, SUCC, INTE = $M[55], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 56 ) 
MEDGE( ADD, LSTF, INTE = $M[56], RATI = 2, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 57 ) 
MEDGE( ADD, FRST, INTE = $M[57], RATI = 2, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 58 ) 
MEDGE( ADD, SUCC, INTE = $M[58], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 59 ) 
MEDGE( ADD, SUCC, INTE = $M[59], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 60 ) 
MEDGE( ADD, SUCC, INTE = $M[60], RATI = 0, 2RAT = 0, PCEN = 0 ) 
 
CURVE( SELE, ID = 61 ) 
MEDGE( ADD, SUCC, INTE = $M[61], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 62 ) 
MEDGE( ADD, SUCC, INTE = $M[62], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 63 ) 
MEDGE( ADD, SUCC, INTE = $M[63], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 64 ) 
MEDGE( ADD, SUCC, INTE = $M[64], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 65 ) 
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MEDGE( ADD, SUCC, INTE = $M[65], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 66 ) 
MEDGE( ADD, SUCC, INTE = $M[66], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 67 ) 
MEDGE( ADD, SUCC, INTE = $M[67], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 68 ) 
MEDGE( ADD, FRTL, INTE = $M[68], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 69 ) 
MEDGE( ADD, SUCC, INTE = $M[69], RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 70 ) 
MEDGE( ADD, FRTL, INTE = $M[70], RATI = $Lb, 2RAT = $Lb, PCEN = 0 ) 
CURVE( SELE, ID = 71 ) 
MEDGE( ADD, SUCC, INTE = $M[71], RATI = 0, 2RAT = 0, PCEN = 0 ) 
 
MEDGE( SELE, ID ) 
44 45 
MEDGE( DELETE ) 
 
// ADD MESH LOOPS 
 
/ Zone over fan plane around motor 
CURVE( SELE, ID ) 
50 56 
62 
59 
37 
61 
65 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 5, EDG3 = 1, EDG4 = 5 ) 
 
CURVE( SELE, ID ) 
59 
63 64 
17 
36 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 2, EDG3 = 1, EDG4 = 1 ) 
 
CURVE( SELE, ID ) 
61 
66 67 
23 
38 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 2, EDG3 = 1, EDG4 = 1 ) 
 
CURVE( SELE, ID ) 
5 
18 
36 38 
24 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 1, EDG3 = 3, EDG4 = 1 ) 
 
/ Zone around body 
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CURVE( SELE, ID ) 
26 
39 43 
28 
70 71 
31 
69 
68 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 5, EDG3 = 1, EDG4 = 5 ) 
 
CURVE( SELE, ID ) 
14 
25 
68 69 
30 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 1, EDG3 = 2, EDG4 = 1 ) 
 
CURVE( SELE, ID ) 
20 
29 
70 71 
32 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 1, EDG3 = 2, EDG4 = 1 ) 
 
CURVE( SELE, ID ) 
13 
25 29 
19 
11 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 5, EDG3 = 1, EDG4 = 1 ) 
 
/ Zone under fan plane around lights 
 
CURVE( SELE, ID ) 
57 
46 49 
65 
60 
34 
58 
62 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 3, EDG3 = 1, EDG4 = 5 ) 
 
 
CURVE( SELE, ID ) 
58 
63 64 
16 
33 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 2, EDG3 = 1, EDG4 = 1 ) 
 
CURVE( SELE, ID ) 
60 
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66 67 
22 
35 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 2, EDG3 = 1, EDG4 = 1 ) 
 
CURVE( SELE, ID ) 
15 
33 35 
21 
32 
31 
30 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 3, EDG3 = 1, EDG4 = 3 ) 
 
/ Inlet site 
 
CURVE( SELE, ID ) 
12 
13 18 
4 
3 
2 
1 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 6, EDG3 = 1, EDG4 = 3 ) 
 
/ Outlet site 
 
CURVE( SELE, ID ) 
6 10 
19 24 
MLOOP( ADD, MAP, EDG1 = 1, EDG2 = 3, EDG3 = 1, EDG4 = 6 ) 
 
// ADD MESH FACES 
 
$NLOOPS = LASTID( MLOOP_ID ) 
 
DO( $I = 1, $I .LE. $NLOOPS ) 
SURFACE( SELE, ID = 1 ) 
MLOOP( SELE, ID = $I) 
MFACE( ADD ) 
ENDDO 
 
// GENERATE MESH 
 
ELEMENT( SETD, QUAD, NODE = 9 ) 
ELEMENT( SETD, EDGE, NODE = 2 ) 
 
MFACE( SELE, ID ) 
1 4 
MFACE( MESH, MAP, ENTI = "air1" ) 
 
MFACE( SELE, ID ) 
5 
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MFACE( MESH, MAP, ENTI = "air2" ) 
 
MFACE( SELE, ID ) 
6 $NLOOPS 
MFACE( MESH, MAP, ENTI = "air" ) 
 
// BOUNDARY MESH 
 
MEDGE( SELE, ID ) 
2 
MEDGE( MESH, MAP, ENTI = "inlet" ) 
 
MEDGE( SELE, ID ) 
8 
MEDGE( MESH, MAP, ENTI = "outlet" ) 
 
MEDGE( SELE, ID ) 
27 
39 
41 
43 
MEDGE( MESH, MAP, ENTI = "body" ) 
 
MEDGE( SELE, ID ) 
40 
MEDGE( MESH, MAP, ENTI = "open1" ) 
 
MEDGE( SELE, ID ) 
42 
MEDGE( MESH, MAP, ENTI = "open2" ) 
 
MEDGE( SELE, ID ) 
57 
46 49 
MEDGE( MESH, MAP, ENTI = "light" ) 
 
MEDGE( SELE, ID ) 
50 56 
MEDGE( MESH, MAP, ENTI = "motor" ) 
 
MEDGE( SELE, ID ) 
62 63 
MEDGE( MESH, MAP, ENTI = "blade1" ) 
 
MEDGE( SELE, ID ) 
65 66 
MEDGE( MESH, MAP, ENTI = "blade2" ) 
 
MEDGE( SELE, ID ) 
1 
3 
7 
9 
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MEDGE( MESH, MAP, ENTI = "walls" ) 
 
MEDGE( SELE, ID ) 
4 6 
MEDGE( MESH, MAP, ENTI = "ceiling" ) 
 
MEDGE( SELE, ID ) 
10 12 
MEDGE( MESH, MAP, ENTI = "floor" ) 
 
END 
 

 
G.2 Simulation Settings: FIDAP Commands 

/ FIDAP Input File 
/ SIMULATION SETTINGS 
/ PROJECT: Air-Conditioned Room with Ceiling Fan 
/ Two-dimensional (2-D) model, SI units 
 
 
FIPREP 
 
/ SI units 
/ Reference temperature: 22 oC = 295 K 
 
$Tref = 22 
$RHO = 1.1967 
$MU = 18.273E-6 
$CP = 1.0043E3 
$K = 25.776E-3 
$BETA = 3.3932E-3 
$NU = $MU/$RHO 
$G = 9.81 
$SC_H2O = 0.60 
 
DENSITY( SET = "air", CONS = $RHO ) 
VISCOSITY( SET = "air", CONS = $MU, MIXLENGTH ) 
SPECIFICHEAT( SET = "air", CONS = $CP ) 
CONDUCTIVITY( SET = "air", CONS = $K ) 
VOLUMEXPANSION( SET = "air", CONS = $BETA, REFTEMP = $Tref ) 
GRAVITY( MAGNITUDE = $G ) 
DIFFUSIVITY( SET = "H2O", CONS = $NU/$SC_H2O ) 
 
ENTITY( FLUI, NAME = "air",PROP = "air", SPEC = 1,MDIFF = "H2O" ) 
ENTITY( FLUI, NAME = "air1",PROP = "air", SPEC = 1,MDIFF = "H2O" ) 
ENTITY( FLUI, NAME = "air2",PROP = "air", SPEC = 1,MDIFF = "H2O" ) 
 
ENTITY( PLOT, NAME = "outlet" ) 
ENTITY( PLOT, NAME = "inlet" ) 
ENTITY( WALL, NAME = "walls" ) 
ENTITY( WALL, NAME = "ceiling" ) 
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ENTITY( WALL, NAME = "floor" ) 
ENTITY( WALL, NAME = "body" ) 
ENTITY( WALL, NAME = "open1" ) 
ENTITY( WALL, NAME = "open2" ) 
ENTITY( WALL, NAME = "light" ) 
ENTITY( WALL, NAME = "motor" ) 
ENTITY( PLOT, NAME = "blade1", ATTACH = "air1", NATTACH = "air" ) 
ENTITY( PLOT, NAME = "blade2", ATTACH = "air1", NATTACH = "air" ) 
 
$V_in = 1.0 
$V_fan = 1.1 
$T_in = $Tref 
$T_body = 34 
$TF_lite = 300 
$TF_motor = 10 
$W_in = 0.0148 
$WF_body = 5E-7 
 
BCNODE( VELO, ENTI = "inlet", CONS, X = $V_in, Y = 0 ) 
BCNODE( VELO, ENTI = "body", ZERO ) 
BCNODE( VELO, ENTI = "open1", ZERO ) 
BCNODE( VELO, ENTI = "open2", ZERO ) 
BCNODE( VELO, ENTI = "light", ZERO ) 
BCNODE( VELO, ENTI = "motor", ZERO ) 
BCNODE( VELO, ENTI = "walls", ZERO ) 
BCNODE( VELO, ENTI = "ceiling", ZERO ) 
BCNODE( VELO, ENTI = "floor", ZERO ) 
BCNODE( VELO, ENTI = "blade1", CONS, X = 0, Y = -$V_fan ) 
BCNODE( VELO, ENTI = "blade2", CONS, X = 0, Y = -$V_fan ) 
 
BCNODE( TEMP, ENTI = "inlet", CONS = $T_in ) 
BCNODE( TEMP, ENTI = "body", CONS = $T_body ) 
BCNODE( TEMP, ENTI = "open1", CONS = $T_body ) 
BCNODE( TEMP, ENTI = "open2", CONS = $T_body ) 
BCFLUX( HEAT, ENTI = "light", CONS = $TF_lite ) 
BCFLUX( HEAT, ENTI = "motor", CONS = $TF_motor ) 
 
BCNODE( SPEC = 1, ENTI = "inlet", CONS = $W_in ) 
BCFLUX( SPEC = 1, ENTI = "body", CONS = $WF_body ) 
BCFLUX( SPEC = 1, ENTI = "open1", CONS = $WF_body ) 
BCFLUX( SPEC = 1, ENTI = "open2", CONS = $WF_body ) 
 
CLIPPING( MINI ) 
0, 0, 0, 0, $T_in, 0, 0, 0, $W_in 
CLIPPING( MAXI ) 
0, 0, 0, 0, 0, 0, 0, 0, 1.0 
 
DATAPRINT( NONE ) 
PRINTOUT( NONE ) 
OPTIONS( UPWI ) 
EXECUTION( NEWJ ) 
 
PRESSURE( PENA = 1E-9, DISC ) 
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PROBLEM( 2-D, NONLINEAR, TURBULENT, BUOYANCY, SPECIES = 1 ) 
SOLUTION( S.S. = 100, VELC = 0.0001, RESC = 0.0001, ACCF = 0.5 ) 
 
END 
 
CREATE( FISOLV ) 
RUN( FISOLV, BACK ) 
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Appendix H: GAMBIT/FIDAP Preprocessing Input for Chapter 9 

H.1 Geometry and Meshing: GAMBIT Commands 

/ GAMBIT Input File 
/ GEOMETRY and MESHING 
/ PROJECT: Air-Conditioned Hospital Operating Room 
/ Three-dimensional (3-D) model, SI units 
 
 
/ Constants: W x D x H of room, L: start height of upper zone 
/ 20' x 7' x 10' = 6.10 x 2.15 x 3 m 
/ 
$W = 6.10 
$D = 2.15 
$H = 3.00 
$W0 = 6.00 
$D0 = 2.10 
$H0 = 2.90 
/ 
$W1 = 2.80 
$W2 = 4.80 
$D1 = 0.80 
$D2 = 1.50 
$H1 = 1.85 
$H2 = 1.75 
$H3 = 0.75 
/ 
$WL = 0.70 
$DL = 0.55 
$HL = 0.30 
$Wb = 0.80 
$Db = 0.60 
$Hb = 0.40 
/ 
/ Supply/Exhaust Grills: 24"x14" 
/ 
$WW = 0.6096 
$HH = 0.3556 
$AA = 0.8 
$BB = 0.6 
$CC = 0.25 
$XX = 0.15 
/ 
$Ws = $WW 
$Hs = $HH 
$As = $AA 
$Bs = $BB 
$Ys = 0.50 
$Zs = 2.45 
/ 
$We = $WW 
$He = $HH 
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$Ae = $AA 
$Be = $BB 
$Ye = 1.00 
$Ze = 0.55 
/ 
/ Mesh parameters (based on boundary layer thickness of 0.05 m) 
/ $S = regular mesh size 
/ $R = successive ratio (mesh edges) 
/ $M = number of intervals (mesh edges) 
/ $F = first-row height (boundary layers) 
/ $G = growth factor (boundary layers) 
/ $N = number of rows (boundary layers) 
/ $T = total depth (boundary layers) 
/ 
$S = 0.1 
/ Total layer thickness = 0.05 m 
$R0 = 1.45 
$M0 = 3 
/ Total layer thickness = 0.095 (Y) m or 0.122 m (Z) 
$Rs = 1.45 
$Ms = 2 
$Re = 1.45 
$Me = 2 
/ Total layer thickness = 0.05 m 
$F = 0.011 
$G = 1.45 
$N = 3 
/ 
$Fs = 0.04 
$Gs = 1.45 
$Ns = 2 
$Fe = 0.04 
$Ge = 1.45 
$Ne = 2 
/ 
/ OPERATING ROOM (HALF): coor. sys. 1 (default) 
/ 
volume create width $W depth $D height $H offset ($W/2) ($D/2) ($H/2) 
brick 
volume create width $W0 depth $D0 height $H0 offset ($W/2) ($D0/2) 
($H/2) brick 
/ 
/ OCCUPIED ZONES: coor. sys. 2 
/ 
coordinate create cartesian oldsystem "c_sys.1" offset ($W/2) 0 0 
axis1 "x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
volume create width $W2 depth $D height $H offset 0 ($D/2) ($H/2) 
brick 
volume create width $W2 depth $D2 height $H1 offset 0 ($D2/2) ($H1/2) 
brick 
volume create width $W1 depth $D1 height $H2 offset 0 ($D1/2) ($H2/2) 
brick 
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volume create width $W1 depth $D1 height $H3 offset 0 ($D1/2) ($H3/2) 
brick 
/ 
/ SURGICAL LIGHTS: coor. sys. 3 
/ 
coordinate create cartesian oldsystem "c_sys.2" offset 0 0 ($H1+0.05) 
axis1 \ 
  "x" angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
volume create width $WL depth $DL height $HL offset 0 ($DL/2) ($HL/2) 
brick 
volume create width $Wb depth $Db height $Hb offset 0 ($Db/2) ($HL/2) 
brick 
/ 
/ PATIENT (HALF): coor. sys. 4 
/ 
coordinate create cartesian oldsystem "c_sys.2" offset 0 0 ($H3+0.05) 
axis1 \ 
  "x" angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
volume create width 1.7 depth 0.25 height 0.3 offset 0 0.125 0.15 
brick 
volume create width 1.8 depth 0.3 height 0.4 offset 0 0.15 0.15 brick 
/ 
/ STAFF 1 (HALF): coor. sys. 5 
/ 
coordinate create cartesian oldsystem "c_sys.2" offset -1.35 0 0 
axis1 "x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
volume create width 0.3 depth 0.25 height 1.7 offset 0.15 0.125 0.85 
brick 
volume create width 0.4 depth 0.3 height 1.75 offset 0.15 0.15 0.875 
brick 
/ 
/ STAFF 2 (HALF): coor. sys. 6 
/ 
coordinate create cartesian oldsystem "c_sys.2" offset 1.05 0 0 axis1 
"x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
volume create width 0.3 depth 0.25 height 1.7 offset 0.15 0.125 0.85 
brick 
volume create width 0.4 depth 0.3 height 1.75 offset 0.15 0.15 0.875 
brick 
/ 
/ STAFF 3 (FULL): coor. sys. 7 
/ 
coordinate create cartesian oldsystem "c_sys.2" offset 0 0.45 0 axis1 
"x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
volume create width 0.5 depth 0.3 height 1.7 offset 0 0.15 0.85 brick 
volume create width 0.6 depth 0.4 height 1.75 offset 0 0.15 0.875 
brick 
/ 
/ SUPPLY GRILL: coor. sys. 8 
/ 
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coordinate create cartesian oldsystem "c_sys.1" offset 0 $Ys $Zs 
axis1 "x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
volume create width $XX depth $Ws height $Hs offset ($XX/2) 0 0 brick 
volume create width $CC depth $As height $Bs offset ($CC/2) 0 0 brick 
/ 
/ EXHAUST GRILL: coor. sys. 9 
/ 
coordinate create cartesian oldsystem "c_sys.1" offset $W $Ye $Ze 
axis1 "x" \ 
  angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 rotation 
volume create width $XX depth $We height $He offset (-$XX/2) 0 0 
brick 
volume create width $CC depth $Ae height $Be offset (-$CC/2) 0 0 
brick 
/ 
/ ROOM WALLS BL - CREATING AUXILIARY EDGES & VOLUMES 
/ 
edge create straight "vertex.1" "vertex.9" 
edge create straight "vertex.2" "vertex.10" 
edge create straight "vertex.3" "vertex.11" 
edge create straight "vertex.4" "vertex.12" 
edge create straight "vertex.5" "vertex.13" 
edge create straight "vertex.6" "vertex.14" 
edge create straight "vertex.7" "vertex.15" 
edge create straight "vertex.8" "vertex.16" 
volume create wireframe "edge.1" "edge.2" "edge.3" "edge.4" "edge.13" 
\ 
  "edge.14" "edge.16" "edge.15" "edge.241" "edge.242" "edge.243" 
"edge.244" 
volume create wireframe "edge.2" "edge.5" "edge.7" "edge.10" 
"edge.14" \ 
  "edge.17" "edge.19" "edge.22" "edge.241" "edge.243" "edge.245" 
"edge.247" 
volume create wireframe "edge.3" "edge.6" "edge.8" "edge.11" 
"edge.15" \ 
  "edge.18" "edge.20" "edge.23" "edge.242" "edge.244" "edge.246" 
"edge.248" 
volume create wireframe "edge.4" "edge.7" "edge.8" "edge.12" 
"edge.16" \ 
  "edge.19" "edge.20" "edge.24" "edge.243" "edge.244" "edge.247" 
"edge.248" 
volume create wireframe "edge.9" "edge.10" "edge.11" "edge.12" 
"edge.21" \ 
  "edge.22" "edge.23" "edge.24" "edge.245" "edge.246" "edge.247" 
"edge.248" 
volume delete "volume.1" lowertopology 
/ 
/ DIVIDING OPERATING ROOM INTO ZONES 
/ 
volume split "volume.2" volumes "volume.3" connected bientity 
volume delete "volume.3" lowertopology 
volume split "volume.27" volumes "volume.4" connected bientity 
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volume delete "volume.4" lowertopology 
volume split "volume.29" volumes "volume.5" connected bientity 
volume delete "volume.5" lowertopology 
volume subtract "volume.21" volumes "volume.12" "volume.14" 
"volume.16" \ 
  keeptool 
volume subtract "volume.30" volumes "volume.10" "volume.12" 
"volume.14" \ 
  "volume.16" 
volume subtract "volume.27" volumes "volume.8" 
/ 
/ LIGHTS BL - CREATING AUXILIARY EDGES & VOLUMES 
/ 
edge create straight "vertex.49" "vertex.241" 
edge create straight "vertex.50" "vertex.242" 
edge create straight "vertex.51" "vertex.243" 
edge create straight "vertex.52" "vertex.244" 
edge create straight "vertex.53" "vertex.245" 
edge create straight "vertex.54" "vertex.246" 
edge create straight "vertex.55" "vertex.63" 
edge create straight "vertex.56" "vertex.64" 
volume create wireframe "edge.73" "edge.74" "edge.75" "edge.76" 
"edge.389" \ 
  "edge.391" "edge.392" "edge.393" "edge.397" "edge.398" "edge.399" 
"edge.400" 
volume create wireframe "edge.74" "edge.77" "edge.79" "edge.82" 
"edge.391" \ 
  "edge.394" "edge.91" "edge.94" "edge.397" "edge.399" "edge.401" 
"edge.403" 
volume create wireframe "edge.75" "edge.78" "edge.80" "edge.83" 
"edge.392" \ 
  "edge.395" "edge.92" "edge.95" "edge.398" "edge.400" "edge.402" 
"edge.404" 
volume create wireframe "edge.76" "edge.79" "edge.80" "edge.84" 
"edge.393" \ 
  "edge.91" "edge.92" "edge.96" "edge.399" "edge.400" "edge.403" 
"edge.404" 
volume create wireframe "edge.81" "edge.82" "edge.83" "edge.84" 
"edge.396" \ 
  "edge.94" "edge.95" "edge.96" "edge.401" "edge.402" "edge.403" 
"edge.404" 
/ 
/ PATIENT BL - CREATING AUXILIARY EDGES & VOLUMES 
/ 
edge create straight "vertex.65" "vertex.227" 
edge create straight "vertex.66" "vertex.228" 
edge create straight "vertex.67" "vertex.75" 
edge create straight "vertex.68" "vertex.76" 
edge create straight "vertex.69" "vertex.229" 
edge create straight "vertex.70" "vertex.230" 
edge create straight "vertex.71" "vertex.79" 
edge create straight "vertex.72" "vertex.80" 
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volume create wireframe "edge.97" "edge.98" "edge.99" "edge.100" 
"edge.366" \ 
  "edge.110" "edge.111" "edge.112" "edge.405" "edge.406" "edge.407" \ 
  "edge.408" 
volume create wireframe "edge.98" "edge.101" "edge.103" "edge.106" 
"edge.110" \ 
  "edge.367" "edge.115" "edge.118" "edge.405" "edge.407" "edge.409" \ 
  "edge.411" 
volume create wireframe "edge.99" "edge.102" "edge.104" "edge.107" 
"edge.111" \ 
  "edge.368" "edge.116" "edge.119" "edge.406" "edge.408" "edge.410" \ 
  "edge.412" 
volume create wireframe "edge.100" "edge.103" "edge.104" "edge.108" \ 
  "edge.112" "edge.115" "edge.116" "edge.120" "edge.407" "edge.408" \ 
  "edge.411" "edge.412" 
volume create wireframe "edge.105" "edge.106" "edge.107" "edge.108" \ 
  "edge.369" "edge.118" "edge.119" "edge.120" "edge.409" "edge.410" \ 
  "edge.411" "edge.412" 
/ 
/ STAFF 1 BL - CREATING AUXILIARY EDGES & VOLUMES 
/ 
edge create straight "vertex.81" "vertex.205" 
edge create straight "vertex.82" "vertex.206" 
edge create straight "vertex.83" "vertex.207" 
edge create straight "vertex.84" "vertex.208" 
edge create straight "vertex.85" "vertex.179" 
edge create straight "vertex.86" "vertex.231" 
edge create straight "vertex.87" "vertex.232" 
edge create straight "vertex.88" "vertex.233" 
volume create wireframe "edge.122" "edge.125" "edge.127" "edge.130" \ 
  "edge.330" "edge.333" "edge.335" "edge.287" "edge.290" "edge.371" \ 
  "edge.373" "edge.413" "edge.415" "edge.417" "edge.419" 
volume create wireframe "edge.123" "edge.126" "edge.128" "edge.131" \ 
  "edge.331" "edge.334" "edge.336" "edge.338" "edge.370" "edge.140" \ 
  "edge.374" "edge.414" "edge.416" "edge.418" "edge.420" 
volume create wireframe "edge.124" "edge.127" "edge.128" "edge.132" \ 
  "edge.332" "edge.335" "edge.336" "edge.339" "edge.371" "edge.140" \ 
  "edge.375" "edge.415" "edge.416" "edge.419" "edge.420" 
volume create wireframe "edge.129" "edge.130" "edge.131" "edge.132" \ 
  "edge.292" "edge.373" "edge.374" "edge.375" "edge.417" "edge.418" \ 
  "edge.419" "edge.420" 
/ 
/ STAFF 2 BL - CREATING AUXILIARY EDGES & VOLUMES 
/ 
edge create straight "vertex.97" "vertex.212" 
edge create straight "vertex.98" "vertex.213" 
edge create straight "vertex.99" "vertex.214" 
edge create straight "vertex.100" "vertex.215" 
edge create straight "vertex.101" "vertex.234" 
edge create straight "vertex.102" "vertex.180" 
edge create straight "vertex.103" "vertex.235" 
edge create straight "vertex.104" "vertex.236" 
volume create wireframe "edge.146" "edge.149" "edge.151" "edge.154" \ 
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  "edge.342" "edge.345" "edge.347" "edge.350" "edge.376" "edge.163" \ 
  "edge.379" "edge.421" "edge.423" "edge.425" "edge.427" 
volume create wireframe "edge.147" "edge.150" "edge.152" "edge.155" \ 
  "edge.343" "edge.346" "edge.348" "edge.351" "edge.291" "edge.377" 
"edge.59" \ 
  "edge.422" "edge.424" "edge.426" "edge.428" 
volume create wireframe "edge.148" "edge.151" "edge.152" "edge.156" \ 
  "edge.344" "edge.347" "edge.348" "edge.352" "edge.163" "edge.377" \ 
  "edge.380" "edge.423" "edge.424" "edge.427" "edge.428" 
volume create wireframe "edge.153" "edge.154" "edge.155" "edge.156" \ 
  "edge.378" "edge.379" "edge.59" "edge.380" "edge.425" "edge.426" 
"edge.427" \ 
  "edge.428" 
/ 
/ STAFF 3 BL - CREATING AUXILIARY EDGES & VOLUMES 
/ 
edge create straight "vertex.113" "vertex.219" 
edge create straight "vertex.114" "vertex.220" 
edge create straight "vertex.115" "vertex.221" 
edge create straight "vertex.116" "vertex.222" 
edge create straight "vertex.117" "vertex.237" 
edge create straight "vertex.118" "vertex.238" 
edge create straight "vertex.119" "vertex.239" 
edge create straight "vertex.120" "vertex.240" 
volume create wireframe "edge.169" "edge.173" "edge.174" "edge.177" \ 
  "edge.353" "edge.357" "edge.358" "edge.361" "edge.185" "edge.186" \ 
  "edge.384" "edge.429" "edge.430" "edge.433" "edge.434" 
volume create wireframe "edge.170" "edge.173" "edge.175" "edge.178" \ 
  "edge.354" "edge.357" "edge.359" "edge.362" "edge.185" "edge.382" \ 
  "edge.385" "edge.429" "edge.431" "edge.433" "edge.435" 
volume create wireframe "edge.171" "edge.174" "edge.176" "edge.179" \ 
  "edge.355" "edge.358" "edge.360" "edge.363" "edge.186" "edge.383" \ 
  "edge.386" "edge.430" "edge.432" "edge.434" "edge.436" 
volume create wireframe "edge.172" "edge.175" "edge.176" "edge.180" \ 
  "edge.356" "edge.359" "edge.360" "edge.364" "edge.382" "edge.383" \ 
  "edge.388" "edge.431" "edge.432" "edge.435" "edge.436" 
volume create wireframe "edge.177" "edge.178" "edge.179" "edge.180" \ 
  "edge.384" "edge.385" "edge.386" "edge.388" "edge.433" "edge.434" \ 
  "edge.435" "edge.436" 
/ 
/ ZONE 1 & UNDER TABLE 
/ 
volume split "volume.30" volumes "volume.6" connected bientity 
volume delete "volume.6" lowertopology 
/ 
/ SUPPLY GRILL - CREATING AUXILIARY EDGES & VOLUMES 
/ 
volume subtract "volume.22" volumes "volume.18" keeptool 
volume subtract "volume.28" volumes "volume.18" 
/ 
edge create straight "vertex.129" "vertex.267" 
edge create straight "vertex.131" "vertex.269" 
edge create straight "vertex.133" "vertex.271" 
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edge create straight "vertex.135" "vertex.273" 
edge create straight "vertex.130" "vertex.138" 
edge create straight "vertex.132" "vertex.140" 
edge create straight "vertex.134" "vertex.142" 
edge create straight "vertex.136" "vertex.144" 
volume create wireframe "edge.194" "edge.193" "edge.196" "edge.195" \ 
  "edge.480" "edge.479" "edge.474" "edge.481" "edge.205" "edge.489" \ 
  "edge.207" "edge.491" "edge.492" "edge.495" "edge.496" 
volume create wireframe "edge.197" "edge.193" "edge.201" "edge.198" \ 
  "edge.482" "edge.479" "edge.470" "edge.483" "edge.205" "edge.490" \ 
  "edge.210" "edge.491" "edge.493" "edge.495" "edge.497" 
volume create wireframe "edge.199" "edge.196" "edge.204" "edge.200" \ 
  "edge.484" "edge.474" "edge.488" "edge.485" "edge.489" "edge.216" \ 
  "edge.212" "edge.492" "edge.494" "edge.496" "edge.498" 
volume create wireframe "edge.202" "edge.201" "edge.204" "edge.203" \ 
  "edge.486" "edge.470" "edge.488" "edge.487" "edge.490" "edge.216" \ 
  "edge.215" "edge.493" "edge.494" "edge.497" "edge.498" 
volume create wireframe "edge.195" "edge.198" "edge.200" "edge.203" \ 
  "edge.207" "edge.210" "edge.212" "edge.215" "edge.495" "edge.496" \ 
  "edge.497" "edge.498" 
/ 
/ EXAUST GRILL - CREATING AUXILIARY EDGES & VOLUMES 
/ 
volume subtract "volume.23" volumes "volume.20" keeptool 
volume subtract "volume.2" volumes "volume.20" 
/ 
edge create straight "vertex.146" "vertex.284" 
edge create straight "vertex.148" "vertex.286" 
edge create straight "vertex.150" "vertex.288" 
edge create straight "vertex.152" "vertex.290" 
edge create straight "vertex.145" "vertex.153" 
edge create straight "vertex.147" "vertex.155" 
edge create straight "vertex.149" "vertex.157" 
edge create straight "vertex.151" "vertex.159" 
volume create wireframe "edge.219" "edge.217" "edge.220" "edge.218" \ 
  "edge.512" "edge.504" "edge.513" "edge.511" "edge.521" "edge.232" \ 
  "edge.230" "edge.523" "edge.524" "edge.527" "edge.528" 
volume create wireframe "edge.222" "edge.217" "edge.225" "edge.221" \ 
  "edge.515" "edge.504" "edge.518" "edge.514" "edge.521" "edge.237" \ 
  "edge.233" "edge.523" "edge.525" "edge.527" "edge.529" 
volume create wireframe "edge.224" "edge.220" "edge.228" "edge.223" \ 
  "edge.517" "edge.513" "edge.500" "edge.516" "edge.232" "edge.522" \ 
  "edge.235" "edge.524" "edge.526" "edge.528" "edge.530" 
volume create wireframe "edge.227" "edge.225" "edge.228" "edge.226" \ 
  "edge.520" "edge.518" "edge.500" "edge.519" "edge.237" "edge.522" \ 
  "edge.238" "edge.525" "edge.526" "edge.529" "edge.530" 
volume create wireframe "edge.218" "edge.221" "edge.223" "edge.226" \ 
  "edge.230" "edge.233" "edge.235" "edge.238" "edge.527" "edge.528" \ 
  "edge.529" "edge.530" 
/ 
/ MESHING: CREATING 3-D HEXAHEDRAL ELEMENT MESH 
/ 
/ OCCUPIED ZONE, LIGHTS & OCCUPANTS 
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/ 
edge mesh "edge.241" "edge.242" "edge.243" "edge.244" "edge.245" 
"edge.246" \ 
  "edge.247" "edge.248" "edge.397" "edge.398" "edge.399" "edge.400" \ 
  "edge.401" "edge.402" "edge.403" "edge.404" "edge.405" "edge.406" \ 
  "edge.407" "edge.408" "edge.409" "edge.410" "edge.411" "edge.412" \ 
  "edge.413" "edge.414" "edge.415" "edge.416" "edge.417" "edge.418" \ 
  "edge.419" "edge.420" "edge.421" "edge.422" "edge.423" "edge.424" \ 
  "edge.425" "edge.426" "edge.427" "edge.428" "edge.429" "edge.430" \ 
  "edge.431" "edge.432" "edge.433" "edge.434" "edge.435" "edge.436" \ 
  successive ratio1 $R0 intervals $M0 
/ 
blayer create first $F growth $G rows $N transition 1 trows 0 
blayer attach "b_layer.1" face "face.63" "face.64" "face.65" 
"face.75" \ 
  "face.76" "face.77" "face.86" "face.87" "face.88" "face.89" edge 
"edge.122" \ 
  "edge.123" "edge.124" "edge.146" "edge.147" "edge.148" "edge.169" \ 
  "edge.170" "edge.171" "edge.172" 
/ 
blayer create first $F growth $G rows ($N-1) transition 1 trows 0 
blayer attach "b_layer.2" face "face.230" "face.234" "face.231" 
"face.235" \ 
  "face.241" "face.245" "face.242" "face.246" "face.252" "face.253" \ 
  "face.256" "face.259" edge "edge.413" "edge.414" "edge.415" 
"edge.416" \ 
  "edge.421" "edge.422" "edge.423" "edge.424" "edge.429" "edge.430" \ 
  "edge.431" "edge.432" 
/ 
volume mesh "volume.54" "volume.30" "volume.29" "volume.27" submap 
size $S 
volume mesh "volume.31" "volume.32" "volume.33" "volume.34" 
"volume.35" map 
volume mesh "volume.36" "volume.37" "volume.38" "volume.39" 
"volume.40" map 
volume mesh "volume.41" "volume.42" "volume.43" "volume.44" map 
volume mesh "volume.45" "volume.46" "volume.47" "volume.48" map 
volume mesh "volume.49" "volume.50" "volume.51" "volume.52" 
"volume.53" map 
/ 
/ SUPPLY SIDE 
/ 
edge mesh "edge.492" "edge.491" "edge.494" "edge.493" successive 
ratio1 $Rs \ 
  intervals $Ms 
/ 
blayer create first $F growth $G rows $N transition 1 trows 0 
blayer attach "b_layer.3" face "face.97" "face.101" "face.98" 
"face.102" edge \ 
  "edge.194" "edge.199" "edge.197" "edge.202" 
/ 
blayer create first $F growth $G rows ($N-1) transition 1 trows 0 
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blayer attach "b_layer.4" face "face.292" "face.291" "face.298" 
"face.295" \ 
  edge "edge.492" "edge.491" "edge.494" "edge.493" 
/ 
blayer create first $Fs growth $Gs rows $Ns transition 1 trows 0 
blayer attach "b_layer.5" face "face.99" "face.99" "face.99" 
"face.99" edge \ 
  "edge.199" "edge.197" "edge.194" "edge.202" 
/ 
volume mesh "volume.28" submap size $S 
volume mesh "volume.55" "volume.57" "volume.56" "volume.58" map 
volume mesh "volume.59" "volume.17" map 
volume mesh "volume.22" cooper source "face.9" "face.3" 
/ 
/ EXHAUST SIDE 
/ 
edge mesh "edge.523" "edge.524" "edge.525" "edge.526" successive 
ratio1 $Re \ 
  intervals $Me 
/ 
blayer create first $F growth $G rows $N transition 1 trows 0 
blayer attach "b_layer.6" face "face.109" "face.110" "face.113" 
"face.114" \ 
  edge "edge.219" "edge.222" "edge.224" "edge.227" 
/ 
blayer create first $F growth $G rows ($N-1) transition 1 trows 0 
blayer attach "b_layer.7" face "face.313" "face.314" "face.317" 
"face.320" \ 
  edge "edge.523" "edge.524" "edge.525" "edge.526" 
/ 
blayer create first $Fe growth $Ge rows $Ne transition 1 trows 0 
blayer attach "b_layer.8" face "face.112" "face.112" "face.112" 
"face.112" \ 
  edge "edge.219" "edge.227" "edge.222" "edge.224" 
/ 
volume mesh "volume.2" submap size $S 
volume mesh "volume.60" "volume.61" "volume.62" "volume.63" map 
volume mesh "volume.64" "volume.19" map 
volume mesh "volume.23" cooper source "face.10" "face.4" 
/ 
/ SIDE WALL, CEILING, & FLOOR 
/ 
volume mesh "volume.24" "volume.25" map 
volume mesh "volume.21" cooper source "face.180" "face.154" 
"face.146" \ 
  "face.134" "face.7" "face.181" 
/ 
volume delete "volume.7" "volume.9" "volume.11" "volume.13" 
"volume.15" \ 
  lowertopology 
/ 
/ PHYSICAL SETTINGS 
/ 
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solver select "FIDAP" 
/ 
physics create "air" ctype "FLUID" volume \ 
  "volume.37" "volume.38" "volume.39" "volume.40" \ 
  "volume.41" "volume.42" "volume.43" "volume.44" \ 
  "volume.45" "volume.46" "volume.47" "volume.48" \ 
  "volume.49" "volume.50" "volume.51" "volume.52" "volume.53" \ 
  "volume.30" "volume.29" "volume.54" "volume.36" \ 
  "volume.2" "volume.7" "volume.9" \ 
  "volume.11" "volume.13" "volume.15" "volume.17" "volume.19" 
"volume.21" \ 
  "volume.22" "volume.23" "volume.24" "volume.25" "volume.54" 
"volume.28" \ 
  "volume.27" "volume.29" "volume.31" "volume.32" "volume.33" 
"volume.34" \ 
  "volume.35" "volume.36" "volume.37" "volume.38" "volume.39" 
"volume.40" \ 
  "volume.41" "volume.42" "volume.43" "volume.44" "volume.45" 
"volume.46" \ 
  "volume.47" "volume.48" "volume.49" "volume.50" "volume.51" 
"volume.52" \ 
  "volume.53" "volume.30" "volume.55" "volume.56" "volume.57" 
"volume.58" \ 
  "volume.59" "volume.60" "volume.61" "volume.62" "volume.63" 
"volume.64" 
/ 
physics create "supply" btype "PLOT" face "face.99" 
physics create "exhaust" btype "PLOT" face "face.112" 
physics create "symmetry" btype "PLOT" face "face.204" "face.147" 
"face.189" \ 
  "face.269" "face.8" "face.137" "face.132" "face.182" "face.178" 
"face.121" \ 
  "face.205" "face.209" "face.212" "face.216" "face.217" "face.221" \ 
  "face.224" "face.228" "face.230" "face.234" "face.239" "face.241" \ 
  "face.245" "face.250" "face.125" "face.128" 
physics create "ceiling" btype "WALL" face "face.6" 
physics create "floor" btype "WALL" face "face.181" "face.229" 
"face.233" \ 
  "face.237" "face.240" "face.244" "face.248" "face.251" "face.255" \ 
  "face.258" "face.261" 
physics create "wall_side" btype "WALL" face "face.5" 
physics create "wall_left" btype "WALL" face "face.3" "face.290" 
"face.297" \ 
  "face.294" "face.300" 
physics create "wall_right" btype "WALL" face "face.4" "face.312" 
"face.316" \ 
  "face.319" "face.322" 
physics create "light_face" btype "WALL" face "face.37" 
physics create "light_back" btype "WALL" face "face.39" "face.40" 
"face.41" \ 
  "face.42" 
physics create "table" btype "WALL" face "face.49" 
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physics create "patient" btype "WALL" face "face.51" "face.52" 
"face.53" \ 
  "face.54" 
physics create "staff_1" btype "WALL" face "face.63" "face.64" 
"face.65" \ 
  "face.66" 
physics create "staff_2" btype "WALL" face "face.75" "face.76" 
"face.77" \ 
  "face.78" 
physics create "staff_3" btype "WALL" face "face.86" "face.87" 
"face.88" \ 
  "face.89" "face.90" 
/ 
/ EXPORTING MESH 
/ 
$ID = GETIDENT() 
$NEUTRALFILE = $ID + ".FDNEUT" 
export fidap $NEUTRALFILE 
 

 
H.2 Simulation Settings: FIDAP Commands 

/ FIDAP Input File 
/ SIMULATION SETTINGS 
/ PROJECT: Air-Conditioned Hospital Operating Room 
/ Three-dimensional (3-D) model, SI units 
 
 
/ Neutral file name for database of model geometry & mesh  
/ 
$NEUTRALFILE = "mesh.FDNEUT" 
/ 
/          CONVERSION OF NEUTRAL FILE TO FIDAP Database 
/ 
FICONV( NEUTRAL ) 
INPUT( FILE = $NEUTRALFILE ) 
OUTPUT( DELETE ) 
END 
/ 
TITLE 
Hospital Operating Room, 3-D model  
/ 
/          CONSTANTS 
/ 
$V_SUPPLY = 1. 
$UX_0 = $V_SUPPLY 
$UY_0 = 0. 
$UZ_0 = 0. 
/ 
$T_SUPPLY = 20. 
$F_LFACE = 100. 
$F_LBACK = 5. 
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$T_PATIENT = 34. 
$T_STAFF = 34. 
/ 
$W_SUPPLY = 0.01 
$FW_PATIENT = 2.5E-6 
$FW_STAFF = 4.0E-6 
/ 
$C_SUPPLY = 0. 
$FC_PATIENT = 1.0E-5 
/ 
IF ( $T_SUPPLY .EQ. 0 ) 
$T_MIN = 1.E-20 
ELSE 
$T_MIN = $T_SUPPLY 
ENDIF 
/ 
IF ( $W_SUPPLY .EQ. 0 ) 
$W_MIN = 1.E-20 
ELSE 
$W_MIN = $W_SUPPLY 
ENDIF 
/ 
IF ( $C_SUPPLY .EQ. 0 ) 
$C_MIN = 1.E-20 
ELSE 
$C_MIN = $C_SUPPLY 
ENDIF 
/ 
$G = 9.8 
$RHO = 1.2 
$MU = 1.8E-5 
$K = 0.026 
$CP = 1004. 
$BETA = 0.0034 
$TREF = 20. 
$D_1 = 2.5e-05 
$D_2 = 1.2e-05 
/ 
FIPREP 
/ 
/          PROBLEM SETUP 
/ 
PROBLEM( 3-D, TURBULENT, NONLINEAR, BUOYANCY, SPECIES = 1, SPECIES = 
2 ) 
GRAVITY( MAGNITUDE = $G ) 
EXECUTION( NEWJOB ) 
PRINTOUT( NONE ) 
DATAPRINT( NONE ) 
/ 
/          CONTINUUM ENTITIES 
/ 
ENTITY( NAME = "air", FLUID, SPEC=1, MDIF="H2O", SPEC=2, MDIF="ALC" ) 
/ 
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/          BOUNDARY ENTITIES 
/ 
ENTITY( NAME = "supply", PLOT ) 
ENTITY( NAME = "exhaust", PLOT ) 
ENTITY( NAME = "symmetry", PLOT ) 
ENTITY( NAME = "wall_side", WALL ) 
ENTITY( NAME = "wall_left", WALL ) 
ENTITY( NAME = "wall_right", WALL ) 
ENTITY( NAME = "floor", WALL ) 
ENTITY( NAME = "ceiling", WALL ) 
ENTITY( NAME = "table", WALL ) 
ENTITY( NAME = "light_face", WALL ) 
ENTITY( NAME = "light_back", WALL ) 
ENTITY( NAME = "patient", WALL ) 
ENTITY( NAME = "staff_1", WALL ) 
ENTITY( NAME = "staff_2", WALL ) 
ENTITY( NAME = "staff_3", WALL ) 
/ 
/          SOLUTION PARAMETERS 
/ 
SOLUTION( SEGREGATED = 400, CR, CGS, VELCONV = .01, NCGC = 1.E-6, 
SCGC = 1.E-6, 
 SCHANGE = .0 ) 
PRESSURE( MIXED = 1.E-8, DISCONTINUOUS ) 
RELAX( HYBRID ) 
OPTIONS( UPWINDING ) 
CLIPPING( MINIMUM ) 
0       0       0       0       $T_MIN  0       0       0       
$W_MIN  $C_MIN 
CLIPPING( MAXIMUM ) 
0       0       0       0       0       0       0       0        
1.      1. 
/ 
/          MATERIAL PROPERTIES 
/ 
/ Partial list of Material Properties data 
/ 
DENSITY( CONSTANT = $RHO ) 
VISCOSITY( CONSTANT = $MU, MIXLENGTH ) 
CONDUCTIVITY( CONSTANT = $K ) 
SPECIFICHEAT( CONSTANT = $CP ) 
VOLUMEXPANSION( CONSTANT = $BETA, REFTEMP = $TREF ) 
DIFFUSIVITY( SET = "H2O", CONS = $D_1 ) 
DIFFUSIVITY( SET = "ALC", CONS = $D_2 ) 
/ 
/          BOUNDARY CONDITIONS 
/ 
BCNODE( VELO, CONSTANT, ENTITY = "supply", X = $UX_0, Y = $UY_0, Z = 
$UZ_0 ) 
BCNODE( UY, ZERO, ENTITY = "symmetry" ) 
BCNODE( VELO, ZERO, ENTITY = "ceiling" ) 
BCNODE( VELO, ZERO, ENTITY = "wall_side" ) 
BCNODE( VELO, ZERO, ENTITY = "wall_left" ) 
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BCNODE( VELO, ZERO, ENTITY = "wall_right" ) 
BCNODE( VELO, ZERO, ENTITY = "floor" ) 
BCNODE( VELO, ZERO, ENTITY = "light_face" ) 
BCNODE( VELO, ZERO, ENTITY = "light_back" ) 
BCNODE( VELO, ZERO, ENTITY = "table" ) 
BCNODE( VELO, ZERO, ENTITY = "patient" ) 
BCNODE( VELO, ZERO, ENTITY = "staff_1" ) 
BCNODE( VELO, ZERO, ENTITY = "staff_2" ) 
BCNODE( VELO, ZERO, ENTITY = "staff_3" ) 
/ 
BCNODE( TEMP, CONSTANT = $T_SUPPLY, ENTITY = "supply" ) 
BCFLUX( HEAT, CONSTANT = $F_LFACE, ENTITY = "light_face" ) 
BCFLUX( HEAT, CONSTANT = $F_LBACK, ENTITY = "light_back" ) 
BCNODE( TEMP, CONSTANT = $T_PATIENT, ENTITY = "patient" ) 
BCNODE( TEMP, CONSTANT = $T_STAFF, ENTITY = "staff_1" ) 
BCNODE( TEMP, CONSTANT = $T_STAFF, ENTITY = "staff_2" ) 
BCNODE( TEMP, CONSTANT = $T_STAFF, ENTITY = "staff_3" ) 
/ 
BCNODE( SPEC = 1, CONSTANT = $W_SUPPLY, ENTITY = "supply" ) 
BCFLUX( SPEC = 1, CONSTANT = $FW_PATIENT, ENTITY = "patient" ) 
BCFLUX( SPEC = 1, CONSTANT = $FW_STAFF, ENTITY = "staff_1" ) 
BCFLUX( SPEC = 1, CONSTANT = $FW_STAFF, ENTITY = "staff_2" ) 
BCFLUX( SPEC = 1, CONSTANT = $FW_STAFF, ENTITY = "staff_3" ) 
/ 
BCNODE( SPEC = 2, CONSTANT = $C_SUPPLY, ENTITY = "supply" ) 
BCFLUX( SPEC = 2, CONSTANT = $FC_PATIENT, ENTITY = "patient" ) 
/ 
END 
/ 
CREATE( FISOLV ) 
RUN( FISOLV, BACKGROUND ) 
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Appendix I: MATLAB Programs for 3-D Solution Visualization 

I.1 Import Numerical Solution from FIDAP 

function ReadFidapSolution3D 
 
global X        % X coordinate 
global Y        % Y coordinate 
global Z        % Z coordinate 
global UX       % X component velocity 
global UY       % Y component velocity 
global UZ       % Z component velocity 
global SP       % Speed 
global P        % Pressure 
global T        % Temperature 
global RH       % FIDAP user-defined variable (relative humidity) 
global S2       % Species 2 (contaminant gas) 
 
% '*.FPNEUT': solution neutral files exported from FIDAP/FIPOST 
% Speed (SP) can be read from a FIDAP neutral files if available or 
% calculated from velocity components as SP = sqrt(UX.^2+UY.^2+UZ.^2) 
 
% Replace proper directory path and file names in next 2 lines 
folder_name = '...\OR_HVAC\NEUTRAL'; 
file_names = {'UX.FPNEUT','UY.FPNEUT','UZ.FPNEUT','P.FPNEUT',... 
    'T.FPNEUT','SP.FPNEUT','RH.FPNEUT','S2.FPNEUT'}; 
 
num_file = length(file_names); 
for k=1:num_file 
    file_name=char(file_names(k)); 
    full_path = strcat(folder_name,'\',file_name); 
    [Vname,N,F,X,Y,Z] = FD2ML3D(full_path); 
    {file_name;Vname;N} 
    switch Vname 
        case 'X COMP. VELOC.      ' 
            UX = F; 
        case 'Y COMP. VELOC.      ' 
            UY = F; 
        case 'Z COMP. VELOC.      ' 
            UZ = F; 
        case 'SPEED               ' 
            SP = F; 
        case 'PRESSURE            ' 
            P = F; 
        case 'TEMPERATURE         ' 
            T = F; 
        case 'USER FUNCTION       ' 
            RH = F; 
        case 'SPECIES  2          ' 
            S2 = F; 
    end 
end 
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function [Vname,N,F,X,Y,Z] = FD2ML3D(fpneut_name) 
 
[Vname,N] = textread(fpneut_name,'%20c %d',1); 
A = zeros(4,N); 
fid = fopen(fpneut_name); 
fgets(fid); 
A = fscanf(fid,'%*d %f %f %f %f',[4 N]); 
fclose(fid); 
F = A(1,:); 
X = A(2,:); 
Y = A(3,:); 
Z = A(4,:); 
 

 
I.2 Solution Visualization for 3-D Operating Room (Chapter 9) 

function OR_Plot3D_Prep 
% Prepare data for 3-D plots 
 
global X 
global Y 
global Z 
global UX 
global UY 
global UZ 
global SP 
global P 
global T 
global S2 
global RH 
 
global XI 
global YI 
global ZI 
global UI 
global VI 
global WI 
global SI 
global PI 
global TI 
global CI 
global RI 
 
global xmin 
global xmax 
global ymin 
global ymax 
global zmin 
global zmax 
 
d = 0.025; 
eps = 0.001; 
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xmin = min(X); xmax = max(X); 
ymin = min(Y); ymax = max(Y); 
zmin = min(Z); zmax = max(Z); 
rx = [xmin:d:xmax]; if rx(end)<xmax-eps rx=[rx xmax]; end 
ry = [ymin:d:ymax]; if ry(end)<ymax-eps ry=[ry ymax]; end 
rz = [zmin:d:zmax]; if rz(end)<zmax-eps rz=[rz zmax]; end 
[XI,YI,ZI] = meshgrid(rx,ry,rz); 
 
UI = griddata3(X,Y,Z,UX,XI,YI,ZI); UI(~finite(UI))=0; 
VI = griddata3(X,Y,Z,UY,XI,YI,ZI); VI(~finite(VI))=0; 
WI = griddata3(X,Y,Z,UZ,XI,YI,ZI); WI(~finite(WI))=0; 
SI = griddata3(X,Y,Z,SP,XI,YI,ZI); SI(~finite(SI))=0; 
PI = griddata3(X,Y,Z,P,XI,YI,ZI); PI(~finite(PI))=0; 
TI = griddata3(X,Y,Z,T,XI,YI,ZI); TI(~finite(TI))=0; 
CI = griddata3(X,Y,Z,S2,XI,YI,ZI); CI(~finite(CI))=0; 
RI = griddata3(X,Y,Z,RH,XI,YI,ZI); RI(~finite(RI))=0; 
 

 
function OR_Plot3D_Speed 
global XI 
global YI 
global ZI 
global SI 
 
figure(1) 
clf reset 
slice(XI,YI,ZI,SI,[1.85 3.05 4.25],[1.5],[2.45]) 
shading interp 
Draw_OperatingRoom_3D 
set(gca,'CLim',[0 0.8]) 
colorbar('SouthOutside') 
view(-30,15) 
 

 
function OR_Plot3D_Streamlines 
global XI 
global YI 
global ZI 
global UI 
global VI 
global WI 
 
Ys = 1.5; 
Yd = 0.25; 
Zs = 2.45; 
Zd = 0.1; 
 
figure(2) 
clf reset 
[sx sy sz] = meshgrid(0,[Ys-Yd Ys Ys+Yd],[Zs-Zd Zs Zs+Zd]); 
cmap =[1 1 0; 1 0 1; 0 1 1; 1 0 0; 0 1 0; 0 0 1; 0 0 .5; 0 .5 0; .5 0 
0]; 
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for i=1:3 
    for j=1:3 
        hlines = 
streamline(XI,YI,ZI,UI,VI,WI,sx(i,1,j),sy(i,1,j),sz(i,1,j)); 
        set(hlines,'LineWidth',2,'Color',cmap(i+3*(j-1),:)) 
    end 
end 
legend({'1','2','3','4','5','6','7','8','9'},... 
  'Position',[0.5 0.004 0 0.066],... 
  'Orientation','horizontal'); 
hold on 
plot3(sx(:),sy(:),sz(:),'*k','MarkerSize',5,'LineWidth',1); 
hold off 
Draw_OperatingRoom_3D_2 
view(-30,15) 
camva(6.8) 
 

 
function OR_Plot3D_Pressure 
global XI 
global YI 
global ZI 
global PI 
 
isovalue = 0.9:0.05:1.2; 
figure(3) 
clf reset 
for i=1:length(isovalue) 
isosurface(XI,YI,ZI,PI,isovalue(i)) 
end 
Draw_OperatingRoom_3D_2 
set(gca,'CLim',[0.9 1.25]) 
colorbar('SouthOutside') 
view(-30,15) 
 

 
function OR_Plot3D_ContaminantConcentration 
global XI 
global YI 
global ZI 
global CI 
 
figure(4) 
clf reset 
slice(XI,YI,ZI,1e6*CI,[1.85 3.05 4.25],[1.5],[0.55 2.45]) 
shading interp; 
Draw_OperatingRoom_3D_2 
set(gca,'CLim',[0 180]) 
colorbar('SouthOutside') 
view(-30,15) 
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function OR_Plot3D_Temperature 
global XI 
global YI 
global ZI 
global TI 
 
figure(5) 
clf reset 
slice(XI,YI,ZI,TI,[1.85 3.05 4.25],[1.5],[0.55 2.45]) 
shading interp; 
Draw_OperatingRoom_3D_2 
set(gca,'CLim',[20 27]) 
colorbar('SouthOutside') 
view(-30,15) 
 

 
function OR_Plot3D_RelativeHumidity 
global XI 
global YI 
global ZI 
global RI 
 
figure(6) 
clf reset 
slice(XI,YI,ZI,100*RI,[1.85 3.05 4.25],[1.5],[0.55 2.45]) 
shading interp; 
Draw_OperatingRoom_3D_2 
set(gca,'CLim',[50 66]) 
colorbar('SouthOutside') 
view(-30,15) 
 

 
function Draw_OperatingRoom_3D(status) 
 
global xmin 
global xmax 
global ymin 
global ymax 
global zmin 
global zmax 
xmin = 0; 
xmax = 6.1; 
ymin = 0; 
ymax = 2.15; 
zmin = 0 
zmax = 3.0; 
gr = [0.4 0.4 0.4]; 
color1 = 'k'; 
 
ys = 1.0; 
zs = 2.45; 
ws = 0.6096; 
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hs = 0.3556; 
ye = 1.0; 
ze = 0.55; 
we = 0.6096; 
he = 0.3556; 
 
daspect([1,1,1]) 
axis([ xmin xmax ymin ymax zmin zmax ]) 
box on 
grid off 
 
xx = [xmin xmin xmin xmin xmin]; 
yy = [ys-ws/2 ys-ws/2 ys+ws/2 ys+ws/2 ys-ws/2]; 
zz = [zs-hs/2 zs+hs/2 zs+hs/2 zs-hs/2 zs-hs/2]; 
line(xx,yy,zz,'Color',color1) 
 
xx = [xmax xmax xmax xmax xmax]; 
yy = [ye-we/2 ye-we/2 ye+we/2 ye+we/2 ye-we/2]; 
zz = [ze-he/2 ze+he/2 ze+he/2 ze-he/2 ze-he/2]; 
line(xx,yy,zz,'Color',color1) 
% 
if ((nargin==0)|((nargin>0)&(status>0))) 
    color_f = 'k'; 
    color_e = 'w'; 
    faces_matrix = [ 1 2 6 5; 2 3 7 6; 3 4 8 7; 4 1 5 8; 1 2 3 4; 5 6 
7 8 ]; 
% surgical light 
    x1 = 2.7; 
    x2 = x1 + 0.7; 
    y1 = 0; 
    y2 = y1 + 0.65; 
    z1 = 1.9; 
    z2 = z1 + 0.3; 
    vertex_matrix = [ x1 y1 z1; x2 y1 z1; x2 y2 z1; x1 y2 z1; x1 y1 
z2; x2 y1 z2; x2 y2 z2; x1 y2 z2 ]; 
    
patch('Vertices',vertex_matrix,'Faces',faces_matrix,'FaceColor',color
_f,'EdgeColor',color_e) 
% patient 
    x1 = 2.2; 
    x2 = x1 + 1.7; 
    y1 = 0; 
    y2 = y1 + 0.25; 
    z1 = 0.8; 
    z2 = z1 + 0.3; 
    vertex_matrix = [ x1 y1 z1; x2 y1 z1; x2 y2 z1; x1 y2 z1; x1 y1 
z2; x2 y1 z2; x2 y2 z2; x1 y2 z2 ]; 
    
patch('Vertices',vertex_matrix,'Faces',faces_matrix,'FaceColor',color
_f,'EdgeColor',color_e) 
% staff 1 
    x1 = 1.7; 
    x2 = x1 + 0.3; 
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    y1 = 0; 
    y2 = y1 + 0.25; 
    z1 = 0; 
    z2 = z1 + 1.7; 
    vertex_matrix = [ x1 y1 z1; x2 y1 z1; x2 y2 z1; x1 y2 z1; x1 y1 
z2; x2 y1 z2; x2 y2 z2; x1 y2 z2 ]; 
    
patch('Vertices',vertex_matrix,'Faces',faces_matrix,'FaceColor',color
_f,'EdgeColor',color_e) 
% staff 2 
    x1 = 4.1; 
    x2 = x1 + 0.3; 
    y1 = 0; 
    y2 = y1 + 0.25; 
    z1 = 0; 
    z2 = z1 + 1.7; 
    vertex_matrix = [ x1 y1 z1; x2 y1 z1; x2 y2 z1; x1 y2 z1; x1 y1 
z2; x2 y1 z2; x2 y2 z2; x1 y2 z2 ]; 
    
patch('Vertices',vertex_matrix,'Faces',faces_matrix,'FaceColor',color
_f,'EdgeColor',color_e) 
% staff 3 
    x1 = 2.8; 
    x2 = x1 + 0.5; 
    y1 = 0.45; 
    y2 = y1 + 0.3; 
    z1 = 0; 
    z2 = z1 + 1.7; 
    vertex_matrix = [ x1 y1 z1; x2 y1 z1; x2 y2 z1; x1 y2 z1; x1 y1 
z2; x2 y1 z2; x2 y2 z2; x1 y2 z2 ]; 
    
patch('Vertices',vertex_matrix,'Faces',faces_matrix,'FaceColor',color
_f,'EdgeColor',color_e) 
end 
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